Significados pessoais do conceito de jogo equitativo em crianças costarriquenhas

Significados pessoais do conceito de jogo equitativo em crianças costarriquenhas

Autores

DOI:

https://doi.org/10.22458/ie.v23i34.3429

Palavras-chave:

compreensão, intuição, probabilidade, jogo, avaliação, matemática, educação

Resumo

O objetivo deste trabalho é descrever os significados pessoais atribuídos aos alunos costarriquenhos do sexto ano do ensino fundamental. A partir de uma análise quantitativa e qualitativa das respostas a dois problemas associados à noção de jogo equitativo “fair play”, são descritas as estratégias empregadas e os conflitos semióticos detectados; também, os resultados obtidos são comparados com aqueles estabelecidos em pesquisas anteriores. Em geral, é demonstrado um entendimento adequado da noção de fair play; no entanto, eles apresentam grandes dificuldades ao justificar a vitória de acordo com a esperança de vitória de cada jogador e frequentemente justificam suas respostas com estratégias aditivas, que geram respostas incorretas. Além disso, foi obtido um desempenho inferior em relação aos resultados relatados em estudos anteriores com sujeitos da mesma idade que não receberam instrução no assunto. 

Biografias Autor

Luis Armando Hernández Solís, Universidad Estatal a Distancia de Costa Rica

Docente investigador en Educación Matemática. Desde 2010 miembro de la Comisión Central del Proyecto Reforma de la Educación Matemática en Costa Rica, del Ministerio de Educación Pública, y profesor de la carrera de Enseñanza de la Matemática de la Universidad Estatal a Distancia en Costa Rica desde 2007. Orador, organizador y revisor científico en eventos académicos nacionales e internacionales.

Carmen Batanero Bernabeu, Universidad de Granada

Catedrática en Didáctica de la Matemática, actualmente profesora colaboradora en el Departamento de Didáctica de la Matemática y Programa de Doctorado en Educación de la Universidad de Granada. Licenciada en Matemáticas y Diplomada en Estadística por la Universidad Complutense de Madrid, Doctora en Matemáticas por la Universidad de Granada. Fue miembro del Comité Ejecutivo de ICMI y Presidenta de IASE. Su investigación se desarrolla en Didáctica de la Estadística, en el grupo FQM-126.

Rocío Álvarez Arroyo, Universidad de Granada

Profesora Ayudante Doctora en el Departamento de Didáctica de la Matemática de la Universidad de Granada. Ingeniero Químico, Ingeniero Técnico Industrial, Máster en Investigación y Avances en Microbiología, Máster en Didáctica de la Matemática y Doctora en Ingeniería Civil por la Universidad de Granada. Su investigación se desarrolla en Didáctica de la Estadística en el grupo FQM-126.

María Magdalena Gea Serrano, Universidad de Granada

Profesora Contratada Doctora en el Departamento de Didáctica de la Matemática de la Universidad de Granada. Licenciada en Matemáticas y Técnicas Estadísticas, Máster en Estadística Aplicada, Máster en Didáctica de la Matemática y Doctora en Ciencias de la Educación por la Universidad de Granada. Su investigación se desarrolla en Didáctica de la Estadística, en el grupo FQM-126.

Referências

Azcárate, P. (1995). El conocimiento profesional de los profesores sobre las nociones de aleatoriedad y probabilidad. Su estudio en el caso de la educación primaria. Tesis doctoral inédita. Universidad de Cádiz, Cádiz.
Alpízar, M., Barrantes, J., Bolaños, H., Céspedes, M., Delgado, E., Freer, D., Padilla, E., y Víquez, M. (2012). Aspectos relevantes sobre la formación docente en I y II ciclos en los temas Probabilidad y Estadística. EDUCARE, 16(2), 113-129.
Alpízar, M., Chavarría, L. y Oviedo, K. (2015). Percepción de un grupo de docentes de I y II ciclo de educación general básica de escuelas públicas de Heredia sobre los temas de estadística y probabilidad. Actualidades Investigativas en Educación, 15(1), 1-23. DOI: dx.doi.org/10.15517/aie.v15i1.17728.
Australian Curriculum, Assessment and Reporting Authority (ACARA). (2013). The Australian curriculum: Mathematics. Sidney, NSW: Author.
Batanero, C. (2005). Significados de la probabilidad en la educación secundaria. Revista Latinoamericana de Matemática Educativa, 8(3), 247-264.
Batanero, C., Henry, M. y Parzysz, B. (2005). The nature of chance and probability. En G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 16-42). New York, USA: Springer.
Batanero, C., Ortiz, J., Gómez, E. y Gea, M. M. (2019). Les jeux équitables comme contexte pour l’enseignement des probabilités et la formation des enseignants. En V. Martin, M. Thibault y L. Theis (Eds.), Enseigner les premiers concepts de probabilités. Québec: Presses de l’Université de Québec.
Bayless, S. y Schlottmann, A. (2010). Skill-Related Uncertainty and Expected Value in 5-to 7-Year-Olds. Psicologica: International Journal of Methodology and Experimental Psychology, 31(3), 677-687.
Beltrán-Pellicer, P., Godino, J. D. y Giacomone, B. (2018). Elaboración de Indicadores Específicos de Idoneidad Didáctica en Probabilidad: Aplicación para la Reflexión sobre la Práctica Docente. Bolema, 32(61), 526-548.
Bisquerra, R. (1989). Métodos de investigación educativa. Barcelona: P.P.U.
Cañizares, M. J. (1997). Influencia del razonamiento proporcional y combinatorio y de creencias subjetivas en las intuiciones probabilísticas primarias. Tesis Doctoral. Universidad de Granada.
Cañizares, M. y Batanero, C. (1997). Influencia del razonamiento proporcional y de las creencias subjetivas en la comparación de probabilidades. UNO, 14, 99-114.
Cañizares, M., Batanero, C., Serrano, L. y Ortiz, J. (1999). Comprensión de la idea de juego equitativo en los niños. Números, 37, 37-55.
Cerrón, W. (2019). La investigación cualitativa en educación. Horizonte de la Ciencia, 9(17), 1-8. DOI: 10.26490/uncp.horizonteciencia.2019.17.510.
Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht: Reidel.
Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht: Reidel.
Fischbein, E. y Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? Educational Studies in Mathematics, 15(1), 1-24.
Fichbein. E., Pamput, E. y Minzat, I. (1967). The child’s intuition of probability. Enfance, 2, 193-280.
Gil, J., León, J. y Morales, M. (2017). Los paradigmas de investigación educativa, desde una perspectiva crítica. Conrado, 13(58), 72-74.
Godino, J. y Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactiques des Mathématiques, 14(3), 325-355.
Godino, J. Batanero, C. y Font, V. (2007). The ontosemiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135.
Godino, J. D., Batanero, C. y Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 38-43.
Godino, J. D., Giacomone, B., Batanero, C. y Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema: 31(57), 90-113.
Green, D. R. (1982). Probability concepts in school pupils aged 11-16 years. Ph. Dissertation. University of Loughborough.
Hernández-Solís, L. A., Batanero, C., Gea, M. M. y Álvarez-Arroyo, R. (2021). Comparing probabilities in urns: A study with primary school students. Uniciencia, 35(2), 1-19.
Jones, G., Langrall, C., y Mooney, E. (2007). Research in probability: responding to classroom realities. En F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (vol. 2, pp. 909-955). Greenwich, CT: Information Age Publishing y NCTM.
Krippendorff, K. (2013). Content analysis: an introduction to its methodology. London, Sage.
Laplace, P. S. (1985). Ensayo filosófico sobre las posibilidades. Madrid: Alianza Editorial. (Trabajo original publicado en 1814)
Lecoutre, M. P. (1992). Cognitive models and problem spaces in "purely random" situations. Educational Studies in Mathematics, 23, 557-568.
Lidster, S. T., Watson, J. M., Collis, K. F. y Pereira-Mendoza, L. (1996). The relationship of the concept of fair to the construction of probabilistic understanding. En Clarkson, P. C. (Ed.), Technology in Mathematics Education, Proceedings of the Nineteenth Annual Conference of the Mathematics Education Research Group of Australasia, Melbourne, 352-359. Sydney: MERGA.
Ministerio de Educación, Cultura y Deporte (MECD). (2014). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Madrid: Autor.
Ministerio de Educación Pública (MEP). (2012). Programas de Estudio de Matemáticas. I, II Y III Ciclos de la Educación General Básica y Ciclo Diversificado. San José: Autor.
Mohamed, N. y Ortiz, J. (2012). Evaluación de conocimientos de profesores en formación sobre el juego equitativo. Números, 80, 103-117.
National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: The Council.
Nilsson, P. y Li, J. (2015). Teaching and learning of probability. En S. J. Cho (Ed.). The Proceedings of the 12th International Congress on Mathematical Education: Intellectual and Attitudinal Challenges (pp. 437-442). New York: Springer.
Noelting, G. (1980a). The development of proportional reasoning and the ratio concept. Part I. Diferentiation of stages. Educational Studies in Mathematics, 11(2), 217-253.
Noelting, G. (1980b). The development of proportional reasoning and the ratio concept. Part II. Problem structure at successive stages: Problem solving strategies and the mechanism of adaptive restructuring. Educational Studies in mathematics, 11(3), 331-363.
Ortiz, J., Batanero, C. y Contreras, J. (2012). Conocimiento de futuros profesores sobre la idea de juego equitativo. Revista Latinoamericana de Investigación en Matemática Educativa, 15 (1): 63-9.
Piaget, J., e Inhelder, B. (1951). La genése de l'idée de hasard chez l'enfant. Paris: Presses Universitaires de France.
Pino, G. y Estrella, S. (2012). Educación estadística: relaciones con la matemática. Pensamiento Educativo. Revista de Investigación Educacional Latinoamericana, 49(1), 53-64.
Peard, R. (1990). Gambling and ethnomathematics in Australia. En Booker, G., Cobb, P. y Mendicutti, T. (Eds). Proceedings of the XIV PME Conference (V.2, pp. 335-342). México. PME Group.
Schlottmann, A. y Anderson, N. H. (1994). Children's judgements of expected value. Developmental Psychology, 30 (1), 56-66.
Watson, J. y ColIis, K. F. (1994). Multimodal functioning in understandi chance and data concepts. En Ponte, J. P. y Matos, J. P. (Eds), Proceedings of the XVIII International Conference for the Psychology of Mathematics Education, v4, 369-376. Universidad de Lisboa.
Zapico, M. (2007). Interrogantes acerca de análisis de contenido y del discurso en los textos escolares. En MINEDUC (Ed.), Primer Seminario Internacional de Textos Escolares (SITE 2006) (pp. 149-155). Santiago: MINEDUC.

Publicado

2021-06-14

Como Citar

Hernández Solís, L. A., Batanero Bernabeu, C., Álvarez Arroyo, R. ., & Gea Serrano, M. M. (2021). Significados pessoais do conceito de jogo equitativo em crianças costarriquenhas . Innovaciones Educativas, 23(34), 228–243. https://doi.org/10.22458/ie.v23i34.3429
Loading...