Genetic Structure of the ‘roble belloto’ Quercus skinneri (Fagaceae) in El Salvador

Authors

  • Roberto Navarro-Linares Universidad de El Salvador, Escuela de Biología, Facultad de Ciencias Naturales y Matemática, Ciudad Universitaria "Dr. Fabio Castillo Figueroa", Final de Av. Mártires y Héroes del 30 julio, San Salvador, El Salvador. / Universidad de El Salvador, Grupo de Investigación en Bioinformática Estructural, Biomodelos y Biomarcadores, Facultad de Ciencias Naturales y Matemática, Ciudad Universitaria "Dr. Fabio Castillo Figueroa", Final de Av. Mártires y Héroes del 30 julio, San Salvador, El Salvador. https://orcid.org/0009-0003-7196-3365
  • Ligia Muñoz-Molina Universidad de El Salvador, Escuela de Biología, Facultad de Ciencias Naturales y Matemática, Ciudad Universitaria "Dr. Fabio Castillo Figueroa", Final de Av. Mártires y Héroes del 30 julio, San Salvador, El Salvador. / Universidad de El Salvador, Grupo de Investigación en Bioinformática Estructural, Biomodelos y Biomarcadores, Facultad de Ciencias Naturales y Matemática, Ciudad Universitaria "Dr. Fabio Castillo Figueroa", Final de Av. Mártires y Héroes del 30 julio, San Salvador, El Salvador. https://orcid.org/0000-0002-9773-6289
  • Miguel Ángel Moreno-Mendoza Universidad de El Salvador, Escuela de Biología, Facultad de Ciencias Naturales y Matemática, Ciudad Universitaria "Dr. Fabio Castillo Figueroa", Final de Av. Mártires y Héroes del 30 julio, San Salvador, El Salvador. / Universidad de El Salvador, Grupo de Investigación en Bioinformática Estructural, Biomodelos y Biomarcadores, Facultad de Ciencias Naturales y Matemática, Ciudad Universitaria "Dr. Fabio Castillo Figueroa", Final de Av. Mártires y Héroes del 30 julio, San Salvador, El Salvador. https://orcid.org/0000-0002-9220-1015

DOI:

https://doi.org/10.22458/urj.v17i1.5762

Keywords:

genetic diversity, phylogeny, oak forests, genetic differentiation

Abstract

Introduction: In El Salvador, Quercus skinneri Benth. is restricted to high-altitude temperate areas. The lack of genetic studies limits conservation decision-making, despite the importance of genetic diversity in these forests. Objective: To determine the genetic variability and structure of Q. skinneri populations in three localities of El Salvador. Methods: Samples were collected between July and December 2020. We assessed the genetic variability of the tree by collecting leaves from ten individuals per locality, and sequencing and analyzing a total of 19 individuals using two DNA barcode regions: a nuclear region (ITS2) and a plastid region (trnH-psbA). Based on aligned sequences, we calculated genetic diversity indices, population structure, isolation by distance, and phylogeny. Results: Genetic diversity was higher in ITS2 (π = 0.01576; Hd = 0,90643; h = 10) than in trnH-psbA (π = 0,00519; Hd = 0,48538; h = 3). Both regions showed populational structure, with the San Vicente Volcano population clearly differentiated (FST = 0,79972–1) from the others, as reflected in haplotype maps and phylogenetic trees. Conclusion: ITS2 and trnH-psbA differed in their ability to detect genetic variability in Q. skinneri. Both revealed populational structure, notably the differentiation of San Vicente Volcano, suggesting distinct genetic lineages. Introduction: In El Salvador, Quercus skinneri Benth. is restricted to high-altitude temperate areas. The lack of genetic studies limits conservation decision-making, despite the importance of genetic diversity in these forests. Objective: To determine the genetic variability and structure of Q. skinneri populations in three localities of El Salvador. Methods: Samples were collected between July and December 2020. We assessed the genetic variability of the tree by collecting leaves from ten individuals per locality, and sequencing and analyzing a total of 19 individuals using two DNA barcode regions: a nuclear region (ITS2) and a plastid region (trnH-psbA). Based on aligned sequences, we calculated genetic diversity indices, population structure, isolation by distance, and phylogeny. Results: Genetic diversity was higher in ITS2 (π = 0.01576; Hd = 0,90643; h = 10) than in trnH-psbA (π = 0,00519; Hd = 0,48538; h = 3). Both regions showed populational structure, with the San Vicente Volcano population clearly differentiated (FST = 0,79972–1) from the others, as reflected in haplotype maps and phylogenetic trees. Conclusion: ITS2 and trnH-psbA differed in their ability to detect genetic variability in Q. skinneri. Both revealed populational structure, notably the differentiation of San Vicente Volcano, suggesting distinct genetic lineages. 

References

Ashley, M. V. (2021). Answers blowing in the wind: A quarter century of genetic studies of pollination in oaks. Forests, 12(5). https://doi.org/10.3390/f12050575

Aykut, Y. (2020). The importance in DNA barcoding of the regions which is covering rRNA genes and its sequences in the genus Quercus L. Bangladesh Journal of Plant Taxonomy, 27(2), 261–271. https://doi.org/10.3329/BJPT.V27I2.50666

Berendsohn, W. G., Gruber, A. K., & Monterrosa Salomón, J. (2009). Nova Silva Cuscatlanica. Árboles nativos e introducidos de El Salvador. Parte 1: Angiospermae – Familias A a L. BGBM.

Bolson, M., Smidt, E. de C., Brotto, M. L., & Silva-Pereira, V. (2015). ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. PLOS ONE, 10(12). https://doi.org/10.1371/journal.pone.0143049

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., & Leon, C. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5(1). https://doi.org/10.1371/journal.pone.0008613

Dhivya, S., Ashutosh, S., Gowtham, I., Baskar, V., Harini, A. B., Mukunthakumar, S., & Sathishkumar, R. (2020). Molecular identification and evolutionary relationships between the subspecies of Musa by DNA barcodes. BMC genomics, 21(1), 659. https://doi.org/10.1186/S12864-020-07036-5

Durán Escalante, K. C., Ortiz Díaz, J. J., Pinzón Esquivel, J. P., & Gálvez Mariscal, M. A. (2023). Utilidad de los códigos de barras de DNA en la identificación de plantas melíferas asociadas a la miel monofloral de Sabal yapa producida en el este de Yucatán, México. https://doi.org/10.26461/26.01

Ersts, P. J. (s/f). Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Recuperado el 22 de febrero de 2025, de https://biodiversityinformatics.amnh.org/open_source/gdmg/index.html

Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8(3), 186–194. https://doi.org/10.1101/gr.8.3.186

Excoffier, L., Laval, G., & Schneider, S. (2017). Arlequin (version 3.0): An integrated software package for population genetics data analysis: https://doi.org/10.1177/117693430500100003

Feng, S., Jiang, M., Shi, Y., Jiao, K., Shen, C., Lu, J., Ying, Q., & Wang, H. (2016). Application of the ribosomal DNA ITS2 region of physalis (Solanaceae): DNA barcoding and phylogenetic study. Frontiers in Plant Science, 7(2016JULY), 1047. https://doi.org/10.3389/FPLS.2016.01047

Feng, S., Jiang, Y., Wang, S., Jiang, M., Chen, Z., Ying, Q., & Wang, H. (2015). Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study. International Journal of Molecular Sciences, 16(9), 21975–21988. https://doi.org/10.3390/ijms160921975

Fernández, J. F., Sork, V. L., Gallego, G., López, J., Bohorques, A., & Tohme, J. (2000). Cross-Amplification of Microsatellite Loci in a Neotropical Quercus Species and Standardization of DNA Extraction from Mature Leaves Dried in Silica Gel. Plant Molecular Biology Reporter, 18(4). https://doi.org/10.1007/BF02825070

Good, K., Coombes, A. J., Valencia-A, S., Rodríguez-Acosta, M., Bruns, E. B., & Alvarez-Clare, S. (2024). Análisis de Vacíos de Conservación de Especies Nativas de Encinos Mesoamericanos.

Gu, W., Song, J., Cao, Y., Sun, Q., Yao, H., Wu, Q., Chao, J., Zhou, J., Xue, W., & Duan, J. (2013). Application of the ITS2 Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0067818

Hamilton. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular ecology, 8(3).

Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

Hipp, A. L., Manos, P. S., González-Rodríguez, A., Hahn, M., Kaproth, M., McVay, J. D., Avalos, S. V., & Cavender-Bares, J. (2018). Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist, 217(1), 439–452. https://doi.org/10.1111/NPH.14773

Hipp, A. L., Manos, P. S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., Crowl, A. A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, O., González-Elizondo, M. S., González-Rodríguez, A., Grimm, G. W., Jiang, X. L., Kremer, A., Lesur, I., McVay, J. D., Plomion, C., … Valencia-Avalos, S. (2020). Genomic landscape of the global oak phylogeny. New Phytologist, 226(4), 1198–1212. https://doi.org/10.1111/NPH.16162

Hollingsworth, P. M. (2011). Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences, 108(49), 19451–19452. https://doi.org/10.1073/PNAS.1116812108

Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J., Graham, S. W., James, K. E., Kim, K. J., John Kress, W., Schneider, H., van AlphenStahl, J., Barrett, S. C. H., van den Berg, C., Bogarin, D., … Little, D. P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12794–12797. https://doi.org/10.1073/PNAS.0905845106

Hvilsom, C., Segelbacher, G., Ekblom, R., Fischer, M. C., Laikre, L., Leus, K., O’Brien, D., Shaw, R., & Sork, V. (2022). Selecting species and populations for monitoring of genetic diversity. IUCN, International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2022.07.en

Jerome, D. (2020). Quercus skinneri. En IUCN Red List of Threatened Species 2020. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T32768A2823212.en

Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change and the option value of genetic diversity. Trends in Plant Science, 14(1), 51–58. https://doi.org/10.1016/J.TPLANTS.2008.10.002

Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8369–8374. https://doi.org/10.1073/PNAS.0503123102

Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., Tamura, K., & Ursula Battistuzzi, F. (2024). MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Molecular Biology and Evolution, 41(12), 1–9. https://doi.org/10.1093/MOLBEV/MSAE263

Lauer, W. (1954). Las formas de la vegetación de El Salvador (con 1 mapa). Comunicaciones, 3(1), 41–45.

Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9). https://doi.org/10.1111/2041-210X.12410

Liu, H. Z., Takeichi, Y., Kamiya, K., & Harada, K. (2013). Phylogeography of Quercus phillyraeoides (Fagaceae) in Japan as revealed by chloroplast DNA variation. Journal of Forest Research, 18(4), 361–370. https://doi.org/10.1007/s10310-012-0357-y

Loera-Sánchez, M., Studer, B., & Kölliker, R. (2020). DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Research Notes, 13(1), 35. https://doi.org/10.1186/s13104-020-4897-5

Martins, K., Gugger, P. F., Llanderal-Mendoza, J., González-Rodríguez, A., Fitz-Gibbon, S. T., Zhao, J. L., Rodríguez-Correa, H., Oyama, K., & Sork, V. L. (2018). Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evolutionary Applications, 11(10), 1842–1858. https://doi.org/10.1111/EVA.12684

Ministerio de Medio Ambiente y Recursos Naturales. (2004). Plan de manejo área natural Los Volcanes.

Morales-Saldaña, S., Valencia-Ávalos, S., Oyama, K., Tovar-Sánchez, E., Hipp, A. L., & González-Rodríguez, A. (2022). Even more oak species in Mexico? Genetic structure and morphological differentiation support the presence of at least two specific entities within Quercus laeta. JSE Journal of Systematics and Evolution. https://doi.org/10.1111/jse.12818

Okaura, T., Nguyen, D. Q., Ubukata, M., & Harada, K. (2007). Phylogeographic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast DNA variation. Genes and Genetic Systems, 82(6), 465–477. https://doi.org/10.1266/ggs.82.465

Ortego, J., Bonal, R., Muñoz, A., & Espelta, J. M. (2015). Living on the edge: The role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak. Plant Biology, 17(3), 676–683. https://doi.org/10.1111/plb.12272

Pacheco-Reyes, F. C., Wei, L., Pérez-Rodríguez, M. Á., Pacheco-Reyes, F. C., Wei, L., & Pérez-Rodríguez, M. Á. (2021). Análisis filogenético de especies de Quercus L. utilizando tres códigos de barras de ADN. Ecosistemas y recursos agropecuarios, 8(2). https://doi.org/10.19136/ERA.A8N2.2831

Pang, X., Song, J., Zhu, Y., Xu, H., Huang, L., & Chen, S. (2011). Applying plant DNA barcodes for Rosaceae species identification. Cladistics, 27(2), 165–170. https://doi.org/10.1111/J.1096-0031.2010.00328.X

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/BIOINFORMATICS/BTS460

Qin, Y., Li, M., Cao, Y., Gao, Y., & Zhang, W. (2017). Molecular thresholds of ITS2 and their implications for molecular evolution and species identification in seed plants. Scientific Reports 2017 7:1, 7(1), 1–8. https://doi.org/10.1038/s41598-017-17695-2

Rodríguez-Acosta, M., & Coombes, A. J. (2020). Manual para la propagación de Quercus: Una guía fácil y rápida para cultivar encinos en México y América Central. 79.

Romero Rangel, S. (2006). Revisión taxonómica del complejo Acutifoliae de Quercus (fagaceae) con énfasis en su representación en México. Acta Botanica Mexicana, 76, 1–45.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/MOLBEV/MSX248

Simeone, M. C., Piredda, R., Papini, A., Vessella, F., & Schirone, B. (2013). Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): Problems, prospects and phylogenetic implications. Botanical Journal of the Linnean Society, 172(4), 478–499. https://doi.org/10.1111/boj.12059

Sokołowska, J., Fuchs, H., & Celiński, K. (2022). Assessment of ITS2 Region Relevance for Taxa Discrimination and Phylogenetic Inference among Pinaceae. Plants (Basel, Switzerland), 11(8). https://doi.org/10.3390/PLANTS11081078

Valencia-A., S. (2017). Diversidad del género Quercus (Fagaceae) en México. Botanical Sciences, 75, 33. https://doi.org/10.17129/BOTSCI.1692

Valencia-Cuevas, L., Piñero, D., Mussali-Galante, P., Valencia-Ávalos, S., & Tovar-Sánchez, E. (2014). Effect of a red oak species gradient on genetic structure and diversity of Quercus Castanea (Fagaceae) in Mexico. Tree Genetics & Genomes, 10(3), 641–652. https://doi.org/10.1007/s11295-014-0710-8

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. En PCR Protocols. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

Xie, J., Chen, Y., Cai, G., Cai, R., Hu, Z., & Wang, H. (2023). Tree Visualization by One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research, 51(W1). https://doi.org/10.1093/nar/gkad359

Published

2025-08-06

How to Cite

Navarro-Linares, R. A., Muñoz-Molina, L., & Moreno-Mendoza, M. Ángel. (2025). Genetic Structure of the ‘roble belloto’ Quercus skinneri (Fagaceae) in El Salvador. UNED Research Journal, 17(1), e5762. https://doi.org/10.22458/urj.v17i1.5762

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.