Spider communities in two localities of the RAMSAR Site Chaco Wetlands, Argentina
DOI:
https://doi.org/10.22458/urj.v8i2.1548Keywords:
Araneae, diversity, forest, grassland, priority area, Chaco Wetlands, ArgentinaAbstract
The RAMSAR Site, Chaco wetlands, covers the eastern fringe of the Chaco province, with a surface of 508 000 ha and several environmental unit, like gallery forest, floodplain forests, palm savannahs, grasslands, and others. The studies about the spider fauna from its site are scarce. This study compares spider communities from forest and grassland in San Francisco ranch (27º30’26’’ S - 59º05’03’’ W) located in San Fernando Department and San Carlos ranch (26º57’’46’’ S - 58º38’12’’ W) located in Bermejo Department; on October and November 2013. The forest structure is different, San Francisco forest is mixed with Chaco vegetation and the cattle activity has destroyed an important part of it. The San Carlos forest is a forest gallery also constituted by paranaense species, with cattle activity too, but it with more control and carefulness by their owners. The spiders were collected by foliage beating, leaf litter sifting, hand collecting and G-vac (vacuum sampling) sampling methods. A total of 1 477 spiders grouped into 261 species/morphospecies from 34 families of Araneomorphae. Eighteen species are new records for Argentina. Araneidae was the most abundant families. Araneidae, Theridiidae and Salticidae were the most richness families. Species accumulation curves with 95% confidence interval show that there was significant difference only for grasslands. Rank abundance curve showed that community structure were different on both sites, referring to abundance, dominant species, species composition and proportion of rare species. The comparison of true diversity showed that San Carlos grassland and forest were more diverse than San Francisco, ones it could be related to vegetation structure and high degree of conservation. This study showed an important richness and abundance of spiders that integrate different communities on RAMSAR site areas, and suggests future research on others environments on this site.References
Avalos, G., Rubio, G. D., Bar, M.E., & González, A. (2007). Arañas (Arachnida, Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Revista de Biología. Tropical, 55, 899-909.
Avalos, G., Damborsky, M. P., Bar, M. E., Oscherov, E. B., & Porcel, E. (2009). Composición de la fauna de Araneae (Arachnida) de la Reserva Provincial Iberá, Corrientes, Argentina. Revista de Biología Tropical, 57 (1-2), 339-351.
Bar, M. E., Oscherov, E.B, Damborsky, M. P., Avalos, G., & Núñez, E. (2008). Primer inventario de la fauna de Arthropoda de la Región Chaqueña Húmeda. INSUGEO Miscelánea, 17, 331-353.
Chebez, J.C. (2009) Los que se van. Ecorregiones de la Argentina II: las selvas en galería. Recuperado de: http://www.losquesevan.com/ecorregiones-de-la-argentina-ii-las-selvas-en-galeria.74c.
Colebourne, P. H., (1974). The influence of habitat structure on the distribution of Araneus diadematus. Journal of Animal Ecology, 43, 401-409.
Colwell, R. K., (2013). EstimateS: Statistical estimation of species richness and shared species from samples. (Version 9.1.0). User’s guide and application: http://viceroy.eeb. uconn.edu/estimates.
Corronca, J.A., & Abdala, C.S. (1994). La fauna araneológica de la Reserva Ecológica “El Bagual”, Formosa, Argentina. Nota preliminar. Aracnología, 9, 1-6.
Dippenaar-Schoeman, A.S., van den Berg, A.M, & van den Berg, A., (1989). Species composition and relative seasonal abundance of spiders from the field and tree layers of the Roodeplaat Dam Nature Reserve. Koedoe 32, 25-38.
Enders, F. (1976). Clutch size related to hunting manner of Spider species. Annals of the Entomological Society of America, 69, 991- 998.
Escobar, M. J.; Avalos, G., & Damborsky, M. P. (2012). Diversidad de Araneae (Arachnida) en la Reserva Colonia Benítez, Chaco Oriental Húmedo, Argentina. Revista FACENA, 28, 3-17.
Feinsinger, P. (2004). El diseño de estudios de campo para la conservación de la biodiversidad. Editorial FAN, Santa Cruz. 242 p.
Gertsch, W. J. (1979). American spiders (2nd ed.). New York, Van Nostrand.
Grismado, C., &. Goloboff, P. A. (2014). Rastelloidina. En: Roig-Juñent, S.; L.E. Claps & J.J. Morrone (Directores), Biodiversidad de Artrópodos Argentinos volumen 3, pp. 103-110, Editorial INSUE - UNT, San Miguel de Tucumán, Argentina.
Green, J. (1996). Spiders in biological control- An Australian perspective. Revue Suisse de Zoologie Volume. hors série: 245-253.
Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54,427-432.
Janetos, A., (1986). Web- site selection: are we asking the right questions?: 9-22 (en) SHEAR, W., Spiders webs, behavior, and evolution. Stanford University Press, California
Jiménez-Valverde, A. & Hortal J. (2003). La curva de acumulación de especies y la necesidad de evaluar los inventarios biológicos. Revista Ibérica de Aracnología, 8,151-161.
Jost, L. (2006). Entropy and diversity. Oikos, 113, 363-375.
Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439.
Krell, F.T. (2004). Parataxonomy versus taxonomy in biodiversity studies - pitfalls and applicability of ‘morphospecies’ sorting. Entomology, Strength in Diversity, XXII International Congress of Entomology, 15-21 August 2004, Brisbane Queensland Australia.
Longino, J. T., & Colwell, R. K. (1997). Biodiversity assessment using structures inventory: capturing the ant fauna of a tropical rain forest. Ecological Applications, 7(4), 1263-1277.
Longino, J. T., Coddington J., & Colwell, R. K. (2002). The ant fauna of a tropical rainforest: estimating species richness in three different ways. Ecology 83, 689–702.
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell Publishing.
Marshall, S., & Rypstra, A. (1999). Spider competition in structurally simple ecosystems. The journal of Arachnology, 27, 343- 350.
Moreno, C. E. (2001). Métodos para medir la biodiversidad. M & T- Manuales & Tesis. SEA, Zaragoza, España. 83 p.
Moreno, C. E., Barragán, F., Pineda, E., & Pavón, N. P. (2011). Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad, 82, 1249-1261.
Morrone, J. J. (2001) Biogeografía de América Latina y el Caribe. Manuales y Tesis. Sociedad Entomológica Aragonesa (SEA), 3, Zaragoza, España, 148 pp.
New, T.R. (1999). Untangling the web: spiders and the challenges of invertebrate conservation. Journal of Insect Conservation, 3, 251-256.
Nyffeler, M. (1999). Prey selection of spiders in the field. The Journal of Arachnology, 27, 317-324.
Riechert, S., & Cady, A., (1983). Patterns of resource use and tests for competitive release in a spider community. Ecology, 64 (4), 899-913.
Riechert, S., & Gillespie, R., (1986). Habitat choice and utilization in web-building spiders: 23-48 (en) SHEAR, W. Spiders webs, behavior, and evolution. Stanford University press, CaliforniaColebourne, 1974.
Rubio, G. D., Corronca, J., & Damborsky M. P. (2008). Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the Humid Chaco ecoregión, north-east Argentina. Environmenntal Entomology. 37, 419-430.
Swift, M. J., Heal, O. W., Anderson, J. M., (1979). Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley, CA, USA.
Symondson, W. O. C., Sunderland, K. D., & Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents? Annual Review Entomology, 47, 561–594.
Uetz, G. W.,Halaj J,.&. Cady, A. B. (1999). Pitfal traping in ecological studies of wandering spider. The Journal Arachnology, 27, 270-280.
Whitmore, C., Slotow, R., Crouch, T. E., & Dippenaar-Schoeman, A. S. (2002). Diversity of spiders (Aranae) in a savanna, Northern province, South Africa. The Journal Arachnology, 30, 344-356.
Wise, D. H. (1993). Spider in Ecological Webs. Cambridge, Cambridge, Inglaterra. 328 p.
Wise, D. H., Modenhauer, D. M., & Halaj, J. (2006): Using stable isotopes to reveal shifts in prey consumption by generalist predators. Ecological Applications, 16, 865–876.
Young, O. P., & Edwards, G. B. (1990). Spiders in United States field crops and their potential effect on crop pests. The Journal Arachnology, 18, 1-27.
Published
How to Cite
Issue
Section
License
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.