Learning analytics as a tool for interpreting the effect of the pandemic on the final grade in Chemistry I course at the State Distance University of Costa Rica
DOI:
https://doi.org/10.22458/caes.v13i2.4489Keywords:
Learning analytics, Pandemic, Chemistry, GradesAbstract
Due to Covid-19, educational institutions had to change traditional educational practices to virtual modality, representing significant challenges on the planning, mediating, and evaluating processes. Learning analytics are a set of innovative tools in the pedagogical area, in which the use of data can contribute to the improvement of courses and educational policies. This work aims to carry out a descriptive reflection of the learning analytics evaluating the effect of the pandemic on the overall performance of the subject. For this purpose, a quantitative investigation was carried out by studying the grades in the subject of Chemistry I during the 2018-2021 period at the UNED, Costa Rica. The overall performance and approval of the subject experienced an increase in the average grade during the period 2020-2021. In addition, some significant differences were found between the mean grades according to the demographic regions of the country. However, it is necessary to make efforts in order to measure the quality of the learning achieved in the subject and the degree of satisfaction of the students according to the learning objectives that have been achieved in the course.
References
Almahdawi, M., Senghore, S., Ambrin, H y Belbase, S. (2021). High school students’ performance indicators in distance learning in chemistry during the COVID-19 pandemic. Education Sciences, 11(11). https://doi.org/10.3390/educsci11110672
Avella, J. T. ; Mansureh S. y Nunn, T.K. (2016). Learning analytics methods, benefits, and challenges in ighher Education: A systematic literature Review. Online Learning, 20(2).
Barrowman, N., Gatscha, S., & Momoli, F. (2021). vtree: Display information about nested subsets of a data frame. R Package version, 5.4.6. https://CRAN.R-project.org/package=vtree
Burnett, J. W., Burke, K. A., Stephens, N. M., Bose, I., Bonaccorsi, C., Wade, A. M. y Awino, J. K. (2020). How the covid-19 pandemic changed chemistry instruction at a large public university in the midwest: Challenges met, (some) obstacles overcome, and lessons learned. Journal of Chemical Education, 97(9), 2793–2799. https://doi.org/10.1021/acs.jchemed.0c00761
Cerro, J. P., Guitert, M. y Romeu, T. (2020). Impact of using learning analytics in asynchronous online discussions in higher education. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-020-00217-y
Chen, K.-Z. y Li, S.-C. (2021). Sequential, typological, and academic dynamics of self-regulated learners: Learning analytics of an undergraduate chemistry online course. Computers and Education: Artificial Intelligence, 2, 100024. https://doi.org/10.1016/j.caeai.2021.100024
Deng, H., Wang, X., Guo, Z., Decker, A., Duan, X., Wang, C., Alex Ambrose, G. y Abbott, K. (2019). PerformanceVis: Visual analytics of student performance data from an introductory chemistry course. Visual Informatics, 3(4), 166–176. https://doi.org/10.1016/j.visinf.2019.10.004
Ferguson, R., Brasher, A., Clow, D., Cooper, A., Hillaire, G., Mittelmeier, J., Rienties, B., Ullmann, T. y Vuorikari, R. (2016). Research evidence on the use of learning analytics - implications for education Policy. En: R. Vuorikari, J. Castaño Muñoz (Eds.), Joint Research Centre Science for Policy Report (pp. 38-40). doi:10.2791/955210.
Games, P. A., Keselman, H. J. y Rogan, J. C. (1981). Simultaneous pairwise multiple comparison procedures for means when sample sizes are unequal. Psychological Bulletin, 90(3), 594–598. https://doi.org/10.1037/0033-2909.90.3.594
Hernández-Sampieri, R., Mendoza-Torres, C.P. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw Hill Education.
Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y. S., Muñoz-Merino, P. J., Broos, T., Whitelock-Wainwright, A., Gašević, D. y Pérez-Sanagustín, M. (2020). Towards learning analytics adoption: A mixed methods study of data-related practices and policies in Latin American universities. British Journal of Educational Technology, 51(4), 915–937. https://doi.org/10.1111/bjet.12933
Hodges, C. Moore, S. Lockee, B. Trust, T. y Bond, A (2020). The Difference Between Emergency Remote Teaching and Online Learning. Consultado el 17 de noviembre del 2021. https://er.educause.edu
Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1). https://doi.org/10.1177/2053951714528481.
Length, R., Buerkner, P., Herve, M., Love, J., Miguez, F., Riebl, H. y Singmann, H. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.7.0. https://CRAN.R-project.org/package=emmeans
Ortiz-Rojas, M., Maya, R., Jimenez, A., Hilliger, I., y Chiluiza, K. (2019). A step by step methodology for software design of a learning analytics tool in Latin America: A case study in Ecuador. Proceedings - 14th Latin American Conference on Learning Technologies, LACLO 2019, 116–122. https://doi.org/10.1109/LACLO49268.2019.00029
Programa Estado de la Nación. (2021). Octavo Estado de la Educación 2021.
R Core Team. (2020). The R Project for statistical computing. Consultado el [03 de enero 2022]. https://www.r-project.org
Reyes, C., Lawrie, G., Thompson, C. y Kyne, S. (2020). Evaluating Learning desing of first-year chemistry through learning analytics. Australian Conference on Science and Mathematics Education: A Science Education for Uncertain Times.
Tigaa, R. A. y Sonawane, S. L. (2020). An international perspective: teaching chemistry and engaging students during the COVID-19 pandemic. Journal of Chemical Education, 97(9), 3318–3321. https://doi.org/10.1021/acs.jchemed.0c00554
Scheffel, M., Tsai, Y., Gasevic, D. y Drachsler, H. (2019). EC-TEL 2019, LNCS 11722 (pp. 510–524). https://doi.org/10.1007/978-3-030-29736-7_38
Searle, S. R., Speed, F. M. y Milliken, G. A. (1980). Population marginal means in the linear model: An alternative to least squares means. American Statistician, 34(4), 216–221. https://doi.org/10.1080/00031305.1980.10483031
Sunasee, R. (2020). Challenges of teaching organic chemistry during COVID-19 pandemic at a primarily undergraduate Institution. Journal of Chemical Education, 97(9), 3176–3181. https://doi.org/10.1021/acs.jchemed.0c00542
Van Heuvelen, K. M., Daub, G. W. y Ryswyk, H. Van. (2020). Emergency remote instruction during the covid-19 pandemic reshapes collaborative learning in general chemistry. Journal of Chemical Education, 97(9), 2884–2888. https://doi.org/10.1021/acs.jchemed.0c00691
Van Horne, S., Curran, M., Smith, A., VanBuren, J., Zahrieh, D., Larsen, R. y Miller, R. (2018). Facilitating student success in introductory chemistry with feedback in an online platform. Technology, Knowledge and Learning, 23(1), 21–40. https://doi.org/10.1007/s10758-017-9341-0
Villalobos, W. y Villalobos, M. (2018). Estudio comparativo del éxito académico en la asignatura de Química I de la Universidad Estatal a Distancia (UNED) y la formación del estudiante en educación secundaria costarricense. Revista Electrónica Calidad en la Educación Superior, 9(2), 257- 275.
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag. http://ggplot2.tidyverse.org
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Electrónica Calidad en la Educación Superior
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta revista provee acceso libre inmediato a su contenido bajo el principio de que hacer disponible gratuitamente la investigación al publico, lo cual fomenta un mayor intercambio de conocimiento global.