Learning analytics as a tool for interpreting the effect of the pandemic on the final grade in Chemistry I course at the State Distance University of Costa Rica

Learning analytics as a tool for interpreting the effect of the pandemic on the final grade in Chemistry I course at the State Distance University of Costa Rica

Authors

DOI:

https://doi.org/10.22458/caes.v13i2.4489

Keywords:

Learning analytics, Pandemic, Chemistry, Grades

Abstract

Due to Covid-19, educational institutions had to change traditional educational practices to virtual modality, representing significant challenges on the planning, mediating, and evaluating processes. Learning analytics are a set of innovative tools in the pedagogical area, in which the use of data can contribute to the improvement of courses and educational policies. This work aims to carry out a descriptive reflection of the learning analytics evaluating the effect of the pandemic on the overall performance of the subject. For this purpose, a quantitative investigation was carried out by studying the grades in the subject of Chemistry I during the 2018-2021 period at the UNED, Costa Rica. The overall performance and approval of the subject experienced an increase in the average grade during the period 2020-2021. In addition, some significant differences were found between the mean grades according to the demographic regions of the country. However, it is necessary to make efforts in order to measure the quality of the learning achieved in the subject and the degree of satisfaction of the students according to the learning objectives that have been achieved in the course. 

References

Almahdawi, M., Senghore, S., Ambrin, H y Belbase, S. (2021). High school students’ performance indicators in distance learning in chemistry during the COVID-19 pandemic. Education Sciences, 11(11). https://doi.org/10.3390/educsci11110672

Avella, J. T. ; Mansureh S. y Nunn, T.K. (2016). Learning analytics methods, benefits, and challenges in ighher Education: A systematic literature Review. Online Learning, 20(2).

Barrowman, N., Gatscha, S., & Momoli, F. (2021). vtree: Display information about nested subsets of a data frame. R Package version, 5.4.6. https://CRAN.R-project.org/package=vtree

Burnett, J. W., Burke, K. A., Stephens, N. M., Bose, I., Bonaccorsi, C., Wade, A. M. y Awino, J. K. (2020). How the covid-19 pandemic changed chemistry instruction at a large public university in the midwest: Challenges met, (some) obstacles overcome, and lessons learned. Journal of Chemical Education, 97(9), 2793–2799. https://doi.org/10.1021/acs.jchemed.0c00761

Cerro, J. P., Guitert, M. y Romeu, T. (2020). Impact of using learning analytics in asynchronous online discussions in higher education. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-020-00217-y

Chen, K.-Z. y Li, S.-C. (2021). Sequential, typological, and academic dynamics of self-regulated learners: Learning analytics of an undergraduate chemistry online course. Computers and Education: Artificial Intelligence, 2, 100024. https://doi.org/10.1016/j.caeai.2021.100024

Deng, H., Wang, X., Guo, Z., Decker, A., Duan, X., Wang, C., Alex Ambrose, G. y Abbott, K. (2019). PerformanceVis: Visual analytics of student performance data from an introductory chemistry course. Visual Informatics, 3(4), 166–176. https://doi.org/10.1016/j.visinf.2019.10.004

Ferguson, R., Brasher, A., Clow, D., Cooper, A., Hillaire, G., Mittelmeier, J., Rienties, B., Ullmann, T. y Vuorikari, R. (2016). Research evidence on the use of learning analytics - implications for education Policy. En: R. Vuorikari, J. Castaño Muñoz (Eds.), Joint Research Centre Science for Policy Report (pp. 38-40). doi:10.2791/955210.

Games, P. A., Keselman, H. J. y Rogan, J. C. (1981). Simultaneous pairwise multiple comparison procedures for means when sample sizes are unequal. Psychological Bulletin, 90(3), 594–598. https://doi.org/10.1037/0033-2909.90.3.594

Hernández-Sampieri, R., Mendoza-Torres, C.P. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw Hill Education.

Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y. S., Muñoz-Merino, P. J., Broos, T., Whitelock-Wainwright, A., Gašević, D. y Pérez-Sanagustín, M. (2020). Towards learning analytics adoption: A mixed methods study of data-related practices and policies in Latin American universities. British Journal of Educational Technology, 51(4), 915–937. https://doi.org/10.1111/bjet.12933

Hodges, C. Moore, S. Lockee, B. Trust, T. y Bond, A (2020). The Difference Between Emergency Remote Teaching and Online Learning. Consultado el 17 de noviembre del 2021. https://er.educause.edu

Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1). https://doi.org/10.1177/2053951714528481.

Length, R., Buerkner, P., Herve, M., Love, J., Miguez, F., Riebl, H. y Singmann, H. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.7.0. https://CRAN.R-project.org/package=emmeans

Ortiz-Rojas, M., Maya, R., Jimenez, A., Hilliger, I., y Chiluiza, K. (2019). A step by step methodology for software design of a learning analytics tool in Latin America: A case study in Ecuador. Proceedings - 14th Latin American Conference on Learning Technologies, LACLO 2019, 116–122. https://doi.org/10.1109/LACLO49268.2019.00029

Programa Estado de la Nación. (2021). Octavo Estado de la Educación 2021.

R Core Team. (2020). The R Project for statistical computing. Consultado el [03 de enero 2022]. https://www.r-project.org

Reyes, C., Lawrie, G., Thompson, C. y Kyne, S. (2020). Evaluating Learning desing of first-year chemistry through learning analytics. Australian Conference on Science and Mathematics Education: A Science Education for Uncertain Times.

Tigaa, R. A. y Sonawane, S. L. (2020). An international perspective: teaching chemistry and engaging students during the COVID-19 pandemic. Journal of Chemical Education, 97(9), 3318–3321. https://doi.org/10.1021/acs.jchemed.0c00554

Scheffel, M., Tsai, Y., Gasevic, D. y Drachsler, H. (2019). EC-TEL 2019, LNCS 11722 (pp. 510–524). https://doi.org/10.1007/978-3-030-29736-7_38

Searle, S. R., Speed, F. M. y Milliken, G. A. (1980). Population marginal means in the linear model: An alternative to least squares means. American Statistician, 34(4), 216–221. https://doi.org/10.1080/00031305.1980.10483031

Sunasee, R. (2020). Challenges of teaching organic chemistry during COVID-19 pandemic at a primarily undergraduate Institution. Journal of Chemical Education, 97(9), 3176–3181. https://doi.org/10.1021/acs.jchemed.0c00542

Van Heuvelen, K. M., Daub, G. W. y Ryswyk, H. Van. (2020). Emergency remote instruction during the covid-19 pandemic reshapes collaborative learning in general chemistry. Journal of Chemical Education, 97(9), 2884–2888. https://doi.org/10.1021/acs.jchemed.0c00691

Van Horne, S., Curran, M., Smith, A., VanBuren, J., Zahrieh, D., Larsen, R. y Miller, R. (2018). Facilitating student success in introductory chemistry with feedback in an online platform. Technology, Knowledge and Learning, 23(1), 21–40. https://doi.org/10.1007/s10758-017-9341-0

Villalobos, W. y Villalobos, M. (2018). Estudio comparativo del éxito académico en la asignatura de Química I de la Universidad Estatal a Distancia (UNED) y la formación del estudiante en educación secundaria costarricense. Revista Electrónica Calidad en la Educación Superior, 9(2), 257- 275.

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer-Verlag. http://ggplot2.tidyverse.org

Published

2022-11-30

How to Cite

Sánchez-Gutiérrez, R., & Villalobos-González, W. (2022). Learning analytics as a tool for interpreting the effect of the pandemic on the final grade in Chemistry I course at the State Distance University of Costa Rica. Revista Electrónica Calidad En La Educación Superior, 13(2), 127–148. https://doi.org/10.22458/caes.v13i2.4489

Issue

Section

I International Conference on Academic Quality Management in Higher Education Institutions
Loading...