Diversity of culicids and molecular analysis of arboviruses in Aedes spp. larvae from Costa Rica
Keywords:
mosquitoes, arthropods, dengue, chikungunya, Zika, biodiversity, distributionAbstract
Introduction: Understanding mosquito diversity, monitoring new species, and recognizing the role of vertical transmission are crucial to effective vector-borne disease management. Objective: To estimate culicid diversity and detect dengue, chikungunya, and Zika viruses in Aedes spp. larvae across 19 districts in Costa Rica. Methods: From August through November 2021, we collected 5 036 mosquito larvae in 26 localities, identified them taxonomically, analyzed them for diversity indices, and used real-time Polymerase Chain Reaction to detect viral RNA in Aedes spp. larvae. Results: We identified eight species of Culicidae, with Aedes aegypti being the most abundant (63.3%), followed by Aedes albopictus (13.9%), which is reported for the first time for Punta Morales. None of the 97 larval pools tested positive for dengue, chikungunya, or Zika. Conclusion: The larval composition exhibited low ecological diversity and no viral infection, indicating limited vertical transmission during the study period, while underscoring the need for sustained entomological surveillance.
References
Agarwal, A., Parida. M., & Dash, P.K. (2017). Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Reviews in Medical Virology, 27(5):e1941. http://dx.doi.org/10.1002/rmv.1941
Calderón-Arguedas, O., Avendaño, A., López-Sánchez, W. & Troyo, A. (2010). Expansion of Aedes albopictus skull in Costa Rica. Revista Ibero-Latinoamericana de Parasitología 69(2):220-222.
Calderón-Arguedas, O., Troyo, A., Moreira-Soto, R.D., Marín, R., & Taylor, L. (2015). Dengue viruses in Aedes albopictus Skuse from a pineapple plantation in Costa Rica. Journal of Vector Ecology, 40(1):184–6. http://dx.doi.org/10.1111/jvec.12149
Calderón-Arguedas, O., Moreira-Soto, R., Vicente-Santos, A., Corrales-Aguilar, E., Rojas-Araya, D., & Troyo, A. (2019). Papel potencial de Aedes albopictus Skuse en la transmisión de virus dengue (DENV) en una zona de actividad piñera de Costa Rica. Revista Biomédica,30:43–51. https://doi.org/10.32776/revbiomed.v30i2.640
Calderón-Arguedas, O., Troyo, A., & Solano, M.E. (2004). Diversidad larval de mosquitos (Diptera: Culicidae) en contenedores artificiales procedentes de una comunidad urbana de San José, Costa Rica. Parasitología Latinoamericana, 59(3–4):132–6. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-77122004000300007
Calderón-Arguedas, O., Troyo, A., Solano, M.E., & Avendaño, A. (2009). Culicidofauna asociada con contenedores artificiales en la comunidad “La Carpio”, Costa Rica. Revista Costarricense de Salud Pública, 18(1):30–36. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-14292009000100006
Casas Martínez, M. (2012). Diversidad y distribución geográfica de las especies de culícidos de importancia médica en la región centro-occidental de México. Comisión Nacional para el conocimiento y uso de la biodiversidad. Informe final del Proyecto FE009 (CRISP / INSP / CONABIO). http://www.conabio.gob.mx/institucion/proyectos/resultados/InfFE009.pdf
Confalonieri, U.E.C., Costa Neto, C. (2012). Diversity of mosquito vectors (Diptera: Culicidae) in Caxiuanã, Pará, Brazil. Interdisciplinary Perspectives on Infectious Diseases, Article 741273. http://dx.doi.org/10.1155/2012/741273
da Costa, C.F., Dos Passos, R.A., Lima, J.B.P., Roque, R.A., de Souza Sampaio, V., Campolina, T.B., Costa Secundino, N.F., & Paolucci Pimenta, P.F. (2017). Transovarial transmission of DENV in Aedes aegypti in the Amazon basin: a local model of xenomonitoring. Parasites and Vectors, 10(1). http://dx.doi.org/10.1186/s13071-017-2194-5
Darsie, R.F. (1993). Keys to the mosquitoes of Costa Rica (Diptera: Culicidae). Columbia, SC: University of South Carolina.
Ferreira-de-Lima, V.H., & Lima-Camara, T.N. (2018). Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasites and Vectors, 11(1). http://dx.doi.org/10.1186/s13071-018-2643-9
Franklinos, L.H.V., Jones, K.E., Redding, D.W., & Abubakar, I. (2019). The effect of global change on mosquito-borne disease. Lancet Infectious Diseases, e302–312. http://dx.doi.org/10.1016/s1473-3099(19)30161-6
Gutiérrez-Bugallo, G., Piedra, L.A., Rodriguez, M., Bisset, J.A., Lourenço-de-Oliveira, R., Weaver, S.C., Vasilakis, N., & Vega-Rúa, A. (2019). Vector-borne transmission and evolution of Zika virus. Nature, Ecology and Evolution,3(4):561–9. http://dx.doi.org/10.1038/s41559-019-0836-z
Ippoliti, C., Candeloro, L., Gilbert, M., Goffredo, M., Mancini, G., Curci, G., Falasca, S., Tora, S., Di Lorenzo, A., Quaglia, M., & Conteet, A. (2019). Defining ecological regions in Italy based on a multivariate clustering approach: A first step towards a targeted vector-borne disease surveillance. Plos One 14(7): e0219072. https://doi.org/10.1371/journal.pone.0219072
Kweka Kweka, E., Baraka, V., Mathias, L., Mwangonde, B., Baraka, G., Lyaruu, L., & Mahande, A. M. (2019). Ecology of Aedes mosquitoes, the major vectors of arboviruses in human population. In J. A. Falcón-Lezama, M. Betancourt-Cravioto, & R. Tapia-Conyer (Eds.), Dengue Fever - a Resilient Threat in the Face of Innovation. IntechOpen. http://dx.doi.org/10.3201/eid2207.160326
Lequime, S., & Lambrechts, L.. (2014). Vertical transmission of arboviruses in mosquitoes: A historical perspective. Infection, Genetics and Evolution, 28:681–90. http://dx.doi.org/10.1016/j.meegid.2014.07.025
Lequime, S., Paul, R.E., & Lambrechts, L. (2016). Determinants of arbovirus vertical transmission in mosquitoes. PLoS Pathogens, 12(5):e1005548. http://dx.doi.org/10.1371/journal.ppat.1005548
Lieske, H. (1954. )Filariasis en Puerto Limón, Costa Rica. Revista Biología Tropical, 2(1):37–44. https://revistas.ucr.ac.cr/index.php/rbt/article/view/28832
Maniero, V.C., Rangel, P.S.C., Coelho, L.M.C., Silva, C.S.B., Aguiar, R.S., Lamas, C.C., & Cardozo, S.V. (2019). Identification of Zika virus in immature phases of Aedes aegypti and Aedes albopictus: a surveillance strategy for outbreak anticipation. Brazilian Journal of Medical and Biological Research, 52(11) , e98339. http://dx.doi.org/10.1590/1414-431x20198339
Marín, R., del Carmen Marquetti, M., Álvarez, Y., Gutiérrez, J.M., & González, R. (2009). Especies de mosquitos (Diptera: Culicidae) y sus sitios de cría en la Región Huetar Atlántica, Costa Rica. Revista Biomedica, 20(1):15–23. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=22081
Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., Müller, C., Obermaier, E., Prati, D., Socher, S.A., Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S., & Rillig, M.C. (2014). Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 4(18):3514–24. http://dx.doi.org/10.1002/ece3.1155
Pinheiro, V.C.S., Tadei, W.P., Barros, P.M., Vasconcelos, P.F.C., & Cruz, A.C.R. (2005). Detection of dengue virus serotype 3 by reverse transcription-polymerase chain reaction in Aedes aegypti (Diptera, Culicidae) captured in Manaus, Amazonas. Memorias Instituto Oswaldo Cruz, 100(8):833–9. http://dx.doi.org/10.1590/s0074-02762005000800003
Romero-Vega, L.M., Piche-Ovares, M., Soto-Garita, C., Barrantes-Murillo, D.F., Chaverri, L.G., Alfaro-Alarcón, A., Corrales-Aguilar, E., & Troyo, A. (2022). Seasonal changes of mosquito communities structure in two endemic regions for arboviruses in Costa Rica: Species richness, diversity, bloodmeal preferences and viral positivity. Research Square, 19 pages. http://dx.doi.org/10.21203/rs.3.rs-1991817/v1
Rueda, L.M. (2004). Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission. Zootaxa, 589(1):1. http://dx.doi.org/10.11646/zootaxa.589.1.1
Waggoner, J.J., Gresh, L., Mohamed-Hadley, A., Ballesteros, G., Davila, M.J.V., Tellez, Y., Sahoo, M.K., Balmaseda, A., Harris, E., & Pinsky, B. A., (2016). Single-reaction multiplex reverse transcription PCR for detection of Zika, Chikungunya, and dengue viruses. Emerging Infectious Diseases, 22(7):1295–7. http://dx.doi.org/10.3201/eid2207.160326
World Health Organization. (2024). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.


