Microalgae in tilapia ponds and its biotechnology, environmental and industrial potential

Microalgae in tilapia ponds and its biotechnology, environmental and industrial potential

Authors

  • Narcy Villalobos Universidad Nacional
  • Carola Scholz Universidad Nacional

Keywords:

Microorganisms, Cyanobacteria, Green algae, Tilapia culture

Abstract

Microalgae have been extensively studied worldwide in the tropics but more studies are needed regarding identification and potential biotechnological applications. Tilapia ponds are artificial ecosystems with a high potential for the identifi­cation of these microalgae, because their physical and chemical conditions are very stable during the year. This research found 31 species of microalgae in tilapia ponds of the Biological Station of 28 miles in Limon, many of which have been recognized for their biotechnological applications. This places Costa Rica as a place where you can find microalgae of interest in this line of research.

 

Author Biographies

Narcy Villalobos, Universidad Nacional

Professor and researcher, head of the Laboratory of Biotechnology of Microalgae. School of Biological Sciences

Carola Scholz, Universidad Nacional

Professor and Researcher, head of the Laboratory of Botany. School of Biological Sciences

References

Aguirre, P.; Álvarez, E.; Ferrer, I. & García, J. (2011). Treatment of piggery wastewater in experimental high rate algal ponds. Rev Latinoam Biotecnol Amb Algal, 2(2):57-66.

Campenni’ L.; B. P. Nobre; A. Santos; Oliveira, Aires- Barros, A. C., M. R., Palavra, A. M. F. & Gouveia, L. (2012). Carotenoid and lipid production by the au­totrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions L. Appl Microbiol Biotechnol (published online).

Chacón, C. Andrade, C. Cárdenas, C. Araujo, I. y Mora­les, E. (2004). Uso de Chlorella sp. y Scenedesmus sp. en la remoción de nitrógeno, fósforo y DQO de aguas residuales urbanas de Maracaibo, Venezuela. Boletín de Investigaciones Biológicas de La universidad del Zulia. Vol. 38. N° 2. 94 – 108.

Charity E., R. Andrade, Vera B, Alexandra I., Cardenas I, Carmen H and Morales A., Ever, D. (2009). Producción de biomasa de la microalga Scenedesmus sp. utili­zando aguas residuales de pescadería. Rev. Téc. Ing. Univ. Zulia [online]. Vol.32, n° 2, 126-134

Craggs, R.; D. Sutherland & Campbell, H. (2012). Hecta­re-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel produc­tion. Appl Phycol 24:329–337.

Griesbeck, C.; Kobl, I., & Heitze, M. (2006). Chlamydo­monas reinhardtii: A Protein Expression System for Pharmaceutical and Biotechnological Proteins r1. Mo­lecular Biotechnology 34 213 – 223

Kaewkannetra, P., Enmak, P & Chiu, T. (2012). The Effect of CO2 and Salinity on the Cultivation of Scenedesmus obliquus for Biodiesel Production. Biotechnology and Bioprocess Engineering, 17: 591-597

López, A y Juana, S. (2005). La colección de microalgas dulceacuícolas y marinas de la Península de Yucatán. Universidad Autónoma de Yucatán. México.

Lopes da Silva, T., Reis, A., Medeiros, R., Oliveira, A. C., & Gouveia, L. (2009). Oil Production Towards Biofuel from Autotrophic Microalgae Semicontinuous Cultiva­tions Monitorized by Flow Cytometry. Appl Biochem Biotechnol, 159:568–578

Martínez, V., A. Pellón, E. Pérez, O. Correa, R. Escobedo, Y. Madruga, A. Oña & Arencibia, R. (2005). Producción de biomasa de Scenedesmus obliquus en diferentes medios de cultivo. Rev. CENIC, Ciencias Biológicas. Vol. 36.N° Especial: 1-7.

Mata, T. M., Martins, A. A. & Caetano, N. S. (2010). Mi­croalgae for biodiesel production and other applica­tions: A review. Renewable and Sustainable Energy Reviews, 14 217–232.

Masojidek, J., Torzillo, G. (2008). Mass Cultivation of Fres­hwater Microalgae. In Sven Eril Jorgensen and Brian D. Fath. Ecological Engineering. Vol. 3 of Encyclope­dia of Ecology. Oxford: Elsevier. 5 vols. Pp 2226-2235.

Masojıdek, J., & Prasil, O. (2010). The development of microalgal biotechnology in the Czech Republic. J Ind Microbiol Biotechnol, 37:1307–1317.

Martínez M, Sanchez, S., Jimenez, J. M., El Yous,F., Mu­noz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedes­mus obliquus. Bioresource Technology, 73: 263-272.

Meuser J, Ananyev G, Wittig L, Kosourov S, Ghirardi M, Sei­bert M, Dismukes G & Posewitz, M. (2009). Phenotypic diversity of hydrogen production in chlorophycean al­gae reflects distinct anaerobic metabolisms. Journal of Biotechnology, 142: 21–30.

Mishra P. K & Mukherji, S. (2012). Biosorption of diesel and lubricating oil on algal biomass. Biotech, 2:301–310.

Mustafa E.-M., Phang, S.-M & Chu, W.-L. (2012). Use of an algal consortium of five algae in the treatment of lan­dfill leachate using the high-rate algal pond system. J Appl Phycol, 24:953–963.

Park, J.B.K. & Craggs, R.J. (2010). Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Science and Techno­logy, 61, 633–639.

Peña Palacios, M. y Ospina-Alvarez, N. (2005). Algas como indicadoras de contaminación. Universidad del Valle. Colombia.164pp.

Pulz, O., & Gross, W. (2004). Valuables products from biothecnology of microalgae. Appl Microbiol Biotech­nol, Vol. 65: 635 – 648.

Shi, W., Wang, L., Rousseau, P. L. &. Lens, P. N. L. (2010). Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based was­tewater treatment systems. Environ Sci Pollut Res, 17:824–833.

Shukla D., Vankar, P.S. & Srivastava, S. K. (2012). Bioreme­diation of hexavalent chromium by a cyanobacterial mat. Appl Water Sci, 2:245–251.

Silva-Benavides A. M, Sili C & G Torzillo. 2008. Cyano­procaryota y microalgas (Chlorophyceae y Bacilla­riophyceae) bentónicas dominantes en ríos de Costa Rica. Rev. Biol. Trop. Vol. 56 (Suppl. 4): 221-235.

Torzillo, G. (2008). Increased Hydrogen Photoproduction by means of a sulfur-deprived Chlamydomonas rein­hardtii d1 protein mutant. International Journal of Hydrogen Energy.

Walker TL, Purton S, Becker DK, Collet C. 2005. Microal­gae as bioreactors. Plant Cell Rep. 24(11):629-41.

Wang L., Min, M., Li, Y., P., Chen, Y., Liu,Y., Wang, Y. & Ruan,R. (2010). Cultivation of green algae Chlo­rella sp. in different wastewaters from munici­pal wastewater treatment plant. Appl. Biochem. Biotechnol.,162(4):1174-86.

Wehr J & Scheath, R. (2003). Fresh water algae of North America: Ecology and Classification. Academic Press. EE.UU. 918 pp.

Wydrzycka, U. (2009). Botánica General. EUNA. Costa Rica. 364 p.

Zhu, Ch., Chen, C,H., Zhao, L., Zhang, Y., Yang, J., Song, L., & Shao Yang (2012). Bioflocculant produ­ced by Chlamydomonas reinhardtii. J Appl Phycol, 24:1245–1251.

Published

2013-01-01

How to Cite

Villalobos, N., & Scholz, C. (2013). Microalgae in tilapia ponds and its biotechnology, environmental and industrial potential. Biocenosis, 27(1-2). Retrieved from https://revistas.uned.ac.cr/index.php/biocenosis/article/view/602
Loading...