Antibacterial, antifungal, toxic and larvicidal activity of Ficus pumila (Moraceae) and Phthirusa stelis (Loranthaceae)

Antibacterial, antifungal, toxic and larvicidal activity of Ficus pumila (Moraceae) and Phthirusa stelis (Loranthaceae)

Autores/as

  • Vilma del Valle Lanza Castillo Instituto Superior de Formación Docente Salomé Ureña, Recinto Luis Napoleón Núñez Molina, Carretera Duarte Km 10 ½, municipio de Licey Al Medio, provincia Santiago, República Dominicana https://orcid.org/0000-0002-7498-9283
  • Magdielis Sarai Marchán Gómez Universidad de Oriente, Núcleo de Sucre, Dpto. de Bioanálisis, Calle Bolívar 6101 Cumaná. Sucre, Venezuela https://orcid.org/0009-0001-6592-3266
  • Lismary José Rivas Patiño Universidad de Oriente, Núcleo de Sucre, Dpto. de Bioanálisis, Calle Bolívar 6101 Cumaná. Sucre, Venezuela https://orcid.org/0009-0006-9579-9661
  • Willian Celestino Henríquez Guzmán Universidad de Oriente, Núcleo de Sucre, Dpto. de Química. Av. Universidad, Cerro Colorado, Cumaná, Estado Sucre, Venezuela https://orcid.org/0009-0002-2209-5314

DOI:

https://doi.org/10.22458/urj.v16i1.5008

Palabras clave:

Probit, Logit, farmacológicos, productos naturales, compuestos bioactivos

Resumen

Introducción: Ficus pumila y Phtirusa stelis se perfilan como fuente de productos naturales. Objetivos: Identificar las familias de compuestos químicos presentes en las especies a estudiar. Determinar la actividad antibacteriana y antifúngica de los extractos crudos de F. pumila y P. stelis. Evaluar la toxicidad de los extractos crudos de la especie contra Artemia sp. Determinar efectos sobre las larvas de Aedes aegypti y. Métodos: Evaluamos la bioactividad de los extractos etanólico e isopropílico obtenidos de los frutos, hojas y tallos de ambas especies para determinar actividad antibacteriana, actividad antifúngica, actividad tóxica contra larvas de Artemia sp, A. aegypti y estudio fitoquímico. Resultados: Identificamos flavonoides, taninos y polifenoles en extractos isopropílicos y etanólicos de hojas, tallos y frutos de F. pumila. Detectamos flavonoides, taninos, antraquinonas, triterpenos y polifenoles en extractos isopropílicos y etanólicos de tallos y hojas de P. stelis En F. pumila, el extracto isopropílico de tallo demostró la actividad más efectiva, ya que ejerció actividad antibacteriana, observándose halos de inhibición sobre B. subtilis (10 mm) y E. coli (7 mm), mientras que el extracto etanólico de las hojas mostró efecto sobre Staphylococcus aureus (11 mm); El extracto etanólico de hojas de P. stelis exhibió actividad contra S. aureus (10 mm), B. subtilis (10 mm) y el extracto de tallo mostró resultados similares con zona de inhibición de halos de 11 y 10 mm, respectivamente. El extracto isopropílico de hojas también mostró actividad contra E. coli (15 mm). Ninguno de los extractos de F. pumila y P. stelis mostró ningún efecto inhibidor del crecimiento contra los hongos patógenos. La mayoría de los extractos de P. stelis mostraron resultados positivos de CL contra Artemia sp., y el extracto de hoja etanólico mostró una alta toxicidad (0,01 µg/mL). El extracto de hoja de isopropilo también mostró alta toxicidad (0,01 µg/mL), al igual que el extracto de tallo de isopropilo (0,02 µg/mL). Los extractos etanólico e isopropílico de F. pumila y P. stelis no mostraron toxicidad para las larvas de Aedes aegypti. Conclusión: Las especies de plantas F. pumila y P. stelis pueden considerarse fuentes de compuestos importantes y prometedores para la investigación terapéutica. Estas plantas han demostrado potencial en varios estudios y futuras investigaciones podrían conducir al descubrimiento de nuevos tratamientos y terapias.

Citas

Aboughe, S., Bardor, M., Nguema-Ona, E., Rihouey, C., Ishii, T., Lerouge, P., & Driouich, A. (2009). Structural characterization of cell wall polysaccharides from two plant species endemic to central Africa, Fleurya aestuans y Phragmanthera capitata. Carbohydrate Polymers, 75(1), 104-109. https://doi.org/ddvxmr

Al Askari, G., Kahovadji, A., Khedid, K., & Mennane, Z. (2013). In vitro antimicrobial activity of aqueous and ethanolic extracts of leaves of Ficus carica collected from five different regions of Moroco. Journal of Materials and Environmental Science, 4(1), 33-38.

Bauer, A., Kirby, L., Sherris, L., & Turk, M. (1966). Antibiotic susceptibility testing by standardized single disk method. The American Journal of Pathology, 45(4), 493-496.

Bazán, J., Ventura, R., Kato, M., Rojas, C., & Delgado, G. (2011). Actividad insecticida de Piper tuberculatum Jacq. sobre Aedes aegypti L. (Diptera: Culicidae) y Anopheles pseudopunctipennis Tehobal (Diptera: Culicidae). Anales de Biología, 33, 135-147.

Bello, J. (2017). Plantas medicinales silvestres y/o naturalizadas en la península de Araya, estado Sucre, Venezuela. Saber Universidad de Oriente, 29, 326-339.

Bueno-Sánchez, J., Martínez-Morales, J., & Stashenko, E. (2009) Actividad antimicobacteriana de terpenos. Salud, Revista de la Universidad Industrial de Santander, 41(3), 231-235.

Carrillo D., & Galván D. (2022). Actividad antimicrobiana de extractos de Taraxacum officinale y Agave lechuguilla. BioTecnología, 26(1), 26-44.

Carrión, J., & García, G. (2010). Preparación de extractos vegetales: determinación de eficiencia metódica. [Tesis de grado no publicada]. Universidad de Cuenca. Ecuador.

Chudzik, M., Korzonek-Szlacheta, I., & Król, W. (2015). Triterpenes as potentially cytotoxic compounds. Molecules (Basel, Switzerland), 20(1), 1610-1625. https://doi.org/10.3390/molecules20011610

Clement, Y., Baksh-Comeau, Y., & Seaforth, C. (2015). An ethnobotanical survey of medicinal plants in Trinidad. Journal of Ethnobiology and Ethnomedicine, 11(1),67. https://doi.org/10.1186/s13002-015-0052-0

Domingo D., & López B. (2003). Plantas con acción antimicrobiana. Revista Española de Quimioterapia, 16(4), 385-393.

Espitia, L., & Sarmiento, D. (2016). Caracterización de los productos forestales no maderables del bosque seco tropical asociado a las comunidades del caribe colombiano. [Tesis de grado no publicada]. Universidad Distrital Francisco José De Caldas.

Estaba, A. (1986). Propiedades antibacteriana y fototóxica de algunas especies de la familia Asteraceae. [Tesis de grado no publicada]. Universidad de Oriente, Venezuela.

Ferreira, B., Rodrigues, H., Guimarães, M., Altemir, A., & Costa, I. (2019). Estudo etnofarmacológico das plantas medicinais com presença de saponinas e sua importância medicinal. Revista da Saúde da AJES, 5(9), 16 - 22.

Fukunaga, T., Nishiya, K., Kajikawa, I., Takeya, K., & Itokawa, H. (1989). Estudios sobre los componentes del muérdago japonés de diferentes árboles huéspedes y sus propiedades antimicrobianas e hipotensivas. Chemical and Pharmaceutical Bulletin (Tokio), 37(6), 1543-1546.

Goyal, P. (2012). Antimicrobial activity of ethanolic root extract of Ficus racemosa Linn. International Journal of ChemTech Research, 4(4), 1765-1769.

Huang, Y., Li, J., Yang, Z., An, W., Xie, C., Liu, S., & Zheng, X. (2022). Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC Plant Biology, 22(1), 253. https://doi.org/10.1186/s12870-022-03643-4

Instituto de Investigaciones de la Amazonia Peruana (IIAP). (2010). Base de datos plantas medicinales 2010 http://www.iiap.org.pe/Archivos/Publicaciones/Publicacion_1586.pdf

Joklik, W. (1995). Microbiología de Zinsser. Editorial Médica Panamericana.

Kaur, J. (2012). Pharmacognostical and preliminary phytochemical studies on the leaf extract of Ficus pumila Linn. Journal of Pharmacognosy and Phytochemistry, 1(4), 105-111.

Kim, Y., Kim, Y., Choi, S., & Ryu, S. (2004). Aislamiento de ramnósidos flavonoides de Loranthus tanakae y efecto citotóxico de los mismos en líneas celulares tumorales humanas. Archives of Pharmaceutical Research, 27(1), 44-47.

Leong, C., Tako, M., Hanashiro, I., & Tamaki, H. (2008). Antioxidant flavonoid glycosides from the leaves of Ficus pumila L. Food chemistry, 109(2), 415–420. https://doi.org/10.1016/j.foodchem.2007.12.069

López, C., Navarro, L., & Caleño, B. (2016). Productos forestales no maderables de CORPOCHIVOR. Una mirada a los regalos del bosque. Editorial Universidad Distrital Francisco José de Caldas. https://tinyurl.com/242u9l33

Madubunyi, L. (1995). Antimicrobial activities of the constituents of Garcinia kola seeds. International Journal of Pharmaceutics, 33(3), 232-237.

Malec, L., & Pomilio, A. (2003). Herbivory effects on the chemical constituents of Bromus pictus. Molecular Medicinal Chemistry, 1, 30-38.

Mallavadhani, U., Narasimhan, K, Venkata, A., Sudhakar, S., Mahapatra, A., Li, W., & Breemen, R. (2006). Tres nuevos triterpenos pentacíclicos y algunos flavonoides de los frutos de una planta ayurvédica india Dendrophthoe falcata y su actividad de unión al receptor de estrógeno. Chemical & Pharmaceutical Bulletin, 54(5), 740-744. https://doi.org/10.1248/cpb.54.740

Marcano, D., & Hasegawa, M. (2018). Fitoquímica orgánica. Consejo de desarrollo científico y humanístico. http://saber.ucv.ve/omp/index.php/editorialucv/catalog/view/18/10/56-1

Martins, D., Ferreira, R., Varela, A., & Teixeira, C. (2006). Comparison between sample disruption methods and solid-liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves. Journal of Chromatography A, 1103, 22-28.

Meyer, B., Ferrigni, N., Putman, J., Jacobsen, L., Nickols, D., & McLaughling, J. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31-34.

Monks, N., Lerner, C., Henríquez, A., Farías, F., Schapoval, E., Suyenaga, E., Da Rocha, A., Schwartsmann, G., & Mothes, B. (2002). Anticancer, antichemotactic and antimicrobial activities of marine sponges collected off the coast of Santa Catarina, southern Brazil. Journal of Experimental Marine Biology and Ecology, 281(1-2), 1-12.

Murugesu, S., Selamat, J., & Perumal, V. (2021). Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. Plants, 10(12), 2749. https://doi.org/10.3390/plants10122749

Nelson, M. 1986. Aedes aegypti. Biología y Ecología. OPS/OMS. Washington.

Noronha, N., Esteves, G., Ribeiro, I., Marques, M., Leomil, L., & Chavasco, J. (2014). Phytochemical profile and antioxidant and antimicrobial activities of hydroethanolic extracts of Ficus pumila. African Journal of. Microbiology Research, 8(28), 2665-2671.

Ntungwe, N., Domínguez-Martín, E., Roberto, A., Tavares, J., Isca, V., Pereira, P., Cebola, M., & Rijo, P. (2020). Artemia species: An Important Tool to Screen General Toxicity Samples. Current Pharmaceutical Design, 26(24), 2892-2908. https://doi.org/10.2174/1381612826666200406083035

Oliveira, A., Valentảo, P., Pereira, J., Silva, B., Tavares, F., & Andrade, P. (2009). Ficus carica L.: metabolic and biological screening. Food and Chemical Toxicology, 47(11), 2841-2846.

Olmedo, D., Vasquez, Y., Morán, J., De León, E., Caballero-George, C., & Solís, P. (2023). Understanding the Artemia salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact. Combinatorial chemistry y high throughput screening, 27(4), 545-554. https://doi.org/10.2174/1386207326666230703095928.

Qi, Z., Zhao, J., Lin, F., Zhou, W., & Gan, R. (2021). Bioactive compounds, therapeutic activities, and applications of Ficus pumila L. Agronomy, 11(1), 89. https://doi.org/10.3390/agronomy11010089

Ragasa, C., Juan, E., & Rideout, J. (1999). A triterpene from Ficus pumila. Journal of Asian Natural Products Research, 4, 269-275.

Rashid, K.; Mohammd, N.; Alwan, M., & Burhan, L. (2014). Antimicrobial activity of fig (Ficus carica Linn.) leaf extract as compared with latex extract against selected bacteria and fungi. Journal of University of Babylon/Pure and Applied Science, 22(5), 1620-1626.

Rincón, C. (2014). Actividad biológica de la familia Lauraceae. [Tesis de Maestría no publicada]. Universidad Nacional de Colombia.

Rodrigues, D., Lopes, L., Couto, V., Soares, J., Alves, M., Bezerra, G., Gomes, A., de Souza, J., Christine, E., Alexandre, S., Costa, M., Rodrigues, M., Elga, M., de Sousa, H., & Rocha, F. (2023). New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of Pharmaceutics, 643, 123221. https://doi.org/10.1016/j.ijpharm.2023.123221

Rodríguez, A., & Esclápes, M. (1995). Protocolos estándares para bioensayos de toxicidad con especies acuáticas. Petróleos de Venezuela Sociedad Anónima (PDVSA).

Santos, M., Isca, V., Ntungwe N., Princiotto, S., Díaz-Lanza, A., & Rijo, P. (2022). Lethality Bioassay using Artemia salina L. Journal of Visualized Experiments: JoVE, 188, e64472. https://doi.org/10.3791/64472

Shim, K., Sharma, N., & An, S. (2022). Mechanistic Insights into the neuroprotective potential of Ficus religiosa Trees. Nutrients, 14(22), 4731.

Sirisha, N., Sreenivasulu, M., Sangeeta, K., & Madhusudhana, C. (2010). Antioxidant properties of Ficus pumila. Journal of International Pharmaceutical Research, 2(4), 2174-2182.

Soni, N., & Dhiman, R. (2020). Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nanoparticles. Parasite Epidemiology and Control, 11, e00166. https://doi.org/10.1016/j.parepi.2020.e00166

Soto, M., & Rosales, M. (2016). Effect of solvent and solvent-to-solid ratio on the phenolic extraction and the antioxidant capacity of extracts from Pinus durangensis and Quercus sideroxyla bark. Maderas: Ciencia y Tecnologia, 18, 701-714.

Stephan, C. (1977). Methods for calculating in LC50.En: F. Mayer & J. Hamelink, J (Eds). American society for testing and material (ASTM) Aquatic Toxicology and Hazard Evaluation (pp. 65-84). ASTM International.

Tereschuk, M., Quarenghi, M., González, M., & Baigorí, M. (2007). Actividad antimicrobiana de flavonoides aislados de Tagetes del NOA. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 6(6), 364-366.

Tkachenko, H., Buyun, L., Terech- Majewska, E., Osadowski, Z., Sosnovskyi, Y., Honcharenko, V., & Andryi, P. (2016). In vitro antibacterial efficacy of various ethanolic extracts obtained from Ficus spp. Leaves against fish pathogen, Pseudomonas fluorescens. En: A. Wesolowska, T. Noch & W. Mikolajczewska (Eds). Globalisation and regional enviroment protection. Technique, technology, ecology (pp 265-286). Gdaṅska szkola wyższa.

Van-Andel, T., & Van´t- klooster, C. (2007). Chapter 6: Medicinal plant use by Surinamese inmigrants in Amsterdan the Netherlands: results of a pilot market survey. In: A. Pieroni & I. Vandebroek (Eds.). Traveling cultures and plants. The ethnobiology and ethnopharmacy of human migration (pp. 122-144). Berghahn Publishers.

Xiao, W., Chen, W., Li, W., Chen, G., Song, X., & Han, C. (2022). Chemical constituents from the stem of Ficus pumila. Natural Product Research, 38(3), 408-414. https://doi.org/10.1080/14786419.2022.2125966

Yan, W., Zhao, M., Ma, Y., Pan, Y., & Yuan, W. (2011). Purification of two antifungal proteins from leaves of the fig (Ficus carica L.). African Journal of Biotechnology, 10(3), 375-379.

Publicado

2024-04-16

Cómo citar

Lanza Castillo, V. del V., Marchán Gómez , M. S., Rivas Patiño, L. J., & Henríquez Guzmán, W. C. (2024). Antibacterial, antifungal, toxic and larvicidal activity of Ficus pumila (Moraceae) and Phthirusa stelis (Loranthaceae). UNED Research Journal, 16(1), e5008. https://doi.org/10.22458/urj.v16i1.5008

Número

Sección

Artículos
Loading...