Antibacterial, antifungal, toxic and larvicidal activity of Ficus pumila (Moraceae) and Phthirusa stelis (Loranthaceae)
DOI:
https://doi.org/10.22458/urj.v16i1.5008Keywords:
Probit, Logit, pharmacological, bioactive compounds, natural productsAbstract
Introduction: Ficus pumila and Phtirusa stelis are emerging as a source of natural products. Objectives: Identify the families of chemical compounds present in the species to be studied. Determine the antibacterial and antifungal activity of the crude extracts of F. pumila and P. stelis. Assess the toxicity of the crude extracts of the species against Artemia sp. Determine effects on Aedes aegypti larvae and. Methods: We evaluated the bioactivity of ethanolic, and isopropyl extracts obtained from the fruits, leaves and stems of both species were evaluated for antibacterial activity, antifungal activity, toxic activity against Artemia sp, A. aegypti larvae and phytochemical study. Results: We identificated flavonoids, tannins, and polyphenols in isopropyl and ethanol extracts of leaves, stems and fruits of F. pumila. We detected flavonoids, tannins, anthraquinones, triterpenes, and polyphenols in isopropyl and ethanol extracts of stems and leaves of P. stelis. We detected flavonoids, tannins, anthraquinones, triterpenes, and polyphenols in isopropyl and ethanol extracts of stems and leaves of P. stelis. F. pumila, the isopropyl stem extract demonstrated the most effective activity, since it exerted antibacterial activity, with inhibition halos being observed on B. subtilis (10 mm) and E. coli (7 mm), while the ethanolic extract of the leaves showed effect on Staphylococcus aureus (11 mm). The ethanolic extract of P. stelis leaves exhibited activity against S. aureus (10 mm), B. subtilis (10 mm) and that of stem extract showed similar results with inhibition zone of halos of 11 and 10 mm, respectively. The isopropyl extract of leaves also displayed activity against E. coli (15 mm). None of the extracts from F. pumila and P. stelis, showed any growth inhibitory effect against the pathogenic fungi. The majority of P. stelis extracts showed positive LC results against Artemia sp., with the ethanolic leaf extract exhibiting high toxicity (0,01 µg/mL). The isopropyl leaf extract also showed high toxicity (0,01 µg/mL), as did the isopropyl stem extract (0,02 µg/mL). The ethanolic and isopropyl extracts of F. pumila and P. stelis did not show toxicity to Aedes aegypti larvae. Conclusion: The plant species F. pumila and P. stelis, can be considered as sources of important and promising compounds for therapeutic research. These plants have shown potential in various studies, and further research could lead to the discovery of new treatments and therapies.
References
Aboughe, S., Bardor, M., Nguema-Ona, E., Rihouey, C., Ishii, T., Lerouge, P., & Driouich, A. (2009). Structural characterization of cell wall polysaccharides from two plant species endemic to central Africa, Fleurya aestuans y Phragmanthera capitata. Carbohydrate Polymers, 75(1), 104-109. https://doi.org/ddvxmr
Al Askari, G., Kahovadji, A., Khedid, K., & Mennane, Z. (2013). In vitro antimicrobial activity of aqueous and ethanolic extracts of leaves of Ficus carica collected from five different regions of Moroco. Journal of Materials and Environmental Science, 4(1), 33-38.
Bauer, A., Kirby, L., Sherris, L., & Turk, M. (1966). Antibiotic susceptibility testing by standardized single disk method. The American Journal of Pathology, 45(4), 493-496.
Bazán, J., Ventura, R., Kato, M., Rojas, C., & Delgado, G. (2011). Actividad insecticida de Piper tuberculatum Jacq. sobre Aedes aegypti L. (Diptera: Culicidae) y Anopheles pseudopunctipennis Tehobal (Diptera: Culicidae). Anales de Biología, 33, 135-147.
Bello, J. (2017). Plantas medicinales silvestres y/o naturalizadas en la península de Araya, estado Sucre, Venezuela. Saber Universidad de Oriente, 29, 326-339.
Bueno-Sánchez, J., Martínez-Morales, J., & Stashenko, E. (2009) Actividad antimicobacteriana de terpenos. Salud, Revista de la Universidad Industrial de Santander, 41(3), 231-235.
Carrillo D., & Galván D. (2022). Actividad antimicrobiana de extractos de Taraxacum officinale y Agave lechuguilla. BioTecnología, 26(1), 26-44.
Carrión, J., & García, G. (2010). Preparación de extractos vegetales: determinación de eficiencia metódica. [Tesis de grado no publicada]. Universidad de Cuenca. Ecuador.
Chudzik, M., Korzonek-Szlacheta, I., & Król, W. (2015). Triterpenes as potentially cytotoxic compounds. Molecules (Basel, Switzerland), 20(1), 1610-1625. https://doi.org/10.3390/molecules20011610
Clement, Y., Baksh-Comeau, Y., & Seaforth, C. (2015). An ethnobotanical survey of medicinal plants in Trinidad. Journal of Ethnobiology and Ethnomedicine, 11(1),67. https://doi.org/10.1186/s13002-015-0052-0
Domingo D., & López B. (2003). Plantas con acción antimicrobiana. Revista Española de Quimioterapia, 16(4), 385-393.
Espitia, L., & Sarmiento, D. (2016). Caracterización de los productos forestales no maderables del bosque seco tropical asociado a las comunidades del caribe colombiano. [Tesis de grado no publicada]. Universidad Distrital Francisco José De Caldas.
Estaba, A. (1986). Propiedades antibacteriana y fototóxica de algunas especies de la familia Asteraceae. [Tesis de grado no publicada]. Universidad de Oriente, Venezuela.
Ferreira, B., Rodrigues, H., Guimarães, M., Altemir, A., & Costa, I. (2019). Estudo etnofarmacológico das plantas medicinais com presença de saponinas e sua importância medicinal. Revista da Saúde da AJES, 5(9), 16 - 22.
Fukunaga, T., Nishiya, K., Kajikawa, I., Takeya, K., & Itokawa, H. (1989). Estudios sobre los componentes del muérdago japonés de diferentes árboles huéspedes y sus propiedades antimicrobianas e hipotensivas. Chemical and Pharmaceutical Bulletin (Tokio), 37(6), 1543-1546.
Goyal, P. (2012). Antimicrobial activity of ethanolic root extract of Ficus racemosa Linn. International Journal of ChemTech Research, 4(4), 1765-1769.
Huang, Y., Li, J., Yang, Z., An, W., Xie, C., Liu, S., & Zheng, X. (2022). Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC Plant Biology, 22(1), 253. https://doi.org/10.1186/s12870-022-03643-4
Instituto de Investigaciones de la Amazonia Peruana (IIAP). (2010). Base de datos plantas medicinales 2010 http://www.iiap.org.pe/Archivos/Publicaciones/Publicacion_1586.pdf
Joklik, W. (1995). Microbiología de Zinsser. Editorial Médica Panamericana.
Kaur, J. (2012). Pharmacognostical and preliminary phytochemical studies on the leaf extract of Ficus pumila Linn. Journal of Pharmacognosy and Phytochemistry, 1(4), 105-111.
Kim, Y., Kim, Y., Choi, S., & Ryu, S. (2004). Aislamiento de ramnósidos flavonoides de Loranthus tanakae y efecto citotóxico de los mismos en líneas celulares tumorales humanas. Archives of Pharmaceutical Research, 27(1), 44-47.
Leong, C., Tako, M., Hanashiro, I., & Tamaki, H. (2008). Antioxidant flavonoid glycosides from the leaves of Ficus pumila L. Food chemistry, 109(2), 415–420. https://doi.org/10.1016/j.foodchem.2007.12.069
López, C., Navarro, L., & Caleño, B. (2016). Productos forestales no maderables de CORPOCHIVOR. Una mirada a los regalos del bosque. Editorial Universidad Distrital Francisco José de Caldas. https://tinyurl.com/242u9l33
Madubunyi, L. (1995). Antimicrobial activities of the constituents of Garcinia kola seeds. International Journal of Pharmaceutics, 33(3), 232-237.
Malec, L., & Pomilio, A. (2003). Herbivory effects on the chemical constituents of Bromus pictus. Molecular Medicinal Chemistry, 1, 30-38.
Mallavadhani, U., Narasimhan, K, Venkata, A., Sudhakar, S., Mahapatra, A., Li, W., & Breemen, R. (2006). Tres nuevos triterpenos pentacíclicos y algunos flavonoides de los frutos de una planta ayurvédica india Dendrophthoe falcata y su actividad de unión al receptor de estrógeno. Chemical & Pharmaceutical Bulletin, 54(5), 740-744. https://doi.org/10.1248/cpb.54.740
Marcano, D., & Hasegawa, M. (2018). Fitoquímica orgánica. Consejo de desarrollo científico y humanístico. http://saber.ucv.ve/omp/index.php/editorialucv/catalog/view/18/10/56-1
Martins, D., Ferreira, R., Varela, A., & Teixeira, C. (2006). Comparison between sample disruption methods and solid-liquid extraction (SLE) to extract phenolic compounds from Ficus carica leaves. Journal of Chromatography A, 1103, 22-28.
Meyer, B., Ferrigni, N., Putman, J., Jacobsen, L., Nickols, D., & McLaughling, J. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31-34.
Monks, N., Lerner, C., Henríquez, A., Farías, F., Schapoval, E., Suyenaga, E., Da Rocha, A., Schwartsmann, G., & Mothes, B. (2002). Anticancer, antichemotactic and antimicrobial activities of marine sponges collected off the coast of Santa Catarina, southern Brazil. Journal of Experimental Marine Biology and Ecology, 281(1-2), 1-12.
Murugesu, S., Selamat, J., & Perumal, V. (2021). Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. Plants, 10(12), 2749. https://doi.org/10.3390/plants10122749
Nelson, M. 1986. Aedes aegypti. Biología y Ecología. OPS/OMS. Washington.
Noronha, N., Esteves, G., Ribeiro, I., Marques, M., Leomil, L., & Chavasco, J. (2014). Phytochemical profile and antioxidant and antimicrobial activities of hydroethanolic extracts of Ficus pumila. African Journal of. Microbiology Research, 8(28), 2665-2671.
Ntungwe, N., Domínguez-Martín, E., Roberto, A., Tavares, J., Isca, V., Pereira, P., Cebola, M., & Rijo, P. (2020). Artemia species: An Important Tool to Screen General Toxicity Samples. Current Pharmaceutical Design, 26(24), 2892-2908. https://doi.org/10.2174/1381612826666200406083035
Oliveira, A., Valentảo, P., Pereira, J., Silva, B., Tavares, F., & Andrade, P. (2009). Ficus carica L.: metabolic and biological screening. Food and Chemical Toxicology, 47(11), 2841-2846.
Olmedo, D., Vasquez, Y., Morán, J., De León, E., Caballero-George, C., & Solís, P. (2023). Understanding the Artemia salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact. Combinatorial chemistry y high throughput screening, 27(4), 545-554. https://doi.org/10.2174/1386207326666230703095928.
Qi, Z., Zhao, J., Lin, F., Zhou, W., & Gan, R. (2021). Bioactive compounds, therapeutic activities, and applications of Ficus pumila L. Agronomy, 11(1), 89. https://doi.org/10.3390/agronomy11010089
Ragasa, C., Juan, E., & Rideout, J. (1999). A triterpene from Ficus pumila. Journal of Asian Natural Products Research, 4, 269-275.
Rashid, K.; Mohammd, N.; Alwan, M., & Burhan, L. (2014). Antimicrobial activity of fig (Ficus carica Linn.) leaf extract as compared with latex extract against selected bacteria and fungi. Journal of University of Babylon/Pure and Applied Science, 22(5), 1620-1626.
Rincón, C. (2014). Actividad biológica de la familia Lauraceae. [Tesis de Maestría no publicada]. Universidad Nacional de Colombia.
Rodrigues, D., Lopes, L., Couto, V., Soares, J., Alves, M., Bezerra, G., Gomes, A., de Souza, J., Christine, E., Alexandre, S., Costa, M., Rodrigues, M., Elga, M., de Sousa, H., & Rocha, F. (2023). New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of Pharmaceutics, 643, 123221. https://doi.org/10.1016/j.ijpharm.2023.123221
Rodríguez, A., & Esclápes, M. (1995). Protocolos estándares para bioensayos de toxicidad con especies acuáticas. Petróleos de Venezuela Sociedad Anónima (PDVSA).
Santos, M., Isca, V., Ntungwe N., Princiotto, S., Díaz-Lanza, A., & Rijo, P. (2022). Lethality Bioassay using Artemia salina L. Journal of Visualized Experiments: JoVE, 188, e64472. https://doi.org/10.3791/64472
Shim, K., Sharma, N., & An, S. (2022). Mechanistic Insights into the neuroprotective potential of Ficus religiosa Trees. Nutrients, 14(22), 4731.
Sirisha, N., Sreenivasulu, M., Sangeeta, K., & Madhusudhana, C. (2010). Antioxidant properties of Ficus pumila. Journal of International Pharmaceutical Research, 2(4), 2174-2182.
Soni, N., & Dhiman, R. (2020). Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nanoparticles. Parasite Epidemiology and Control, 11, e00166. https://doi.org/10.1016/j.parepi.2020.e00166
Soto, M., & Rosales, M. (2016). Effect of solvent and solvent-to-solid ratio on the phenolic extraction and the antioxidant capacity of extracts from Pinus durangensis and Quercus sideroxyla bark. Maderas: Ciencia y Tecnologia, 18, 701-714.
Stephan, C. (1977). Methods for calculating in LC50.En: F. Mayer & J. Hamelink, J (Eds). American society for testing and material (ASTM) Aquatic Toxicology and Hazard Evaluation (pp. 65-84). ASTM International.
Tereschuk, M., Quarenghi, M., González, M., & Baigorí, M. (2007). Actividad antimicrobiana de flavonoides aislados de Tagetes del NOA. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 6(6), 364-366.
Tkachenko, H., Buyun, L., Terech- Majewska, E., Osadowski, Z., Sosnovskyi, Y., Honcharenko, V., & Andryi, P. (2016). In vitro antibacterial efficacy of various ethanolic extracts obtained from Ficus spp. Leaves against fish pathogen, Pseudomonas fluorescens. En: A. Wesolowska, T. Noch & W. Mikolajczewska (Eds). Globalisation and regional enviroment protection. Technique, technology, ecology (pp 265-286). Gdaṅska szkola wyższa.
Van-Andel, T., & Van´t- klooster, C. (2007). Chapter 6: Medicinal plant use by Surinamese inmigrants in Amsterdan the Netherlands: results of a pilot market survey. In: A. Pieroni & I. Vandebroek (Eds.). Traveling cultures and plants. The ethnobiology and ethnopharmacy of human migration (pp. 122-144). Berghahn Publishers.
Xiao, W., Chen, W., Li, W., Chen, G., Song, X., & Han, C. (2022). Chemical constituents from the stem of Ficus pumila. Natural Product Research, 38(3), 408-414. https://doi.org/10.1080/14786419.2022.2125966
Yan, W., Zhao, M., Ma, Y., Pan, Y., & Yuan, W. (2011). Purification of two antifungal proteins from leaves of the fig (Ficus carica L.). African Journal of Biotechnology, 10(3), 375-379.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.