Caracterización molecular y riesgos de transmisión de Plasmodium falciparum de mosquitos Anopheles en Malete, Nigeria

Caracterización molecular y riesgos de transmisión de Plasmodium falciparum de mosquitos Anopheles en Malete, Nigeria

Autores/as

DOI:

https://doi.org/10.22458/urj.v15i2.4689

Palabras clave:

Mosquito, Anopheles, Transmisión de la Malaria, Malete, Estado de Kwara, Nigeria

Resumen

Introducción: Los estudios de vigilancia de vectores de malaria son útiles para el control basado en evidencia en comunidades específicas. Tales estudios faltan en Malete, una comunidad periurbana de rápido crecimiento en Nigeria. Objetivo: Evaluar la identidad de especies hermanas, los índices de sangre humana y los riesgos de transmisión de Plasmodium falciparum por mosquitos Anopheles, en Malete. Métodos: Trimestralmente recolecté mosquitos endófilos de casas habitadas, utilizando la técnica de captura por aspersión de piretro. Identifiqué los mosquitos y analicé la presencia de sangre humana y P. falciparum por métodos estándar de PCR y ELISA, respectivamente. Resultados: Los mosquitos Anopheles (90%) fueron, por mucho, más abundantes que Culex (10%) y Mansonia (0,5%). Específicamente, A. gambiae (85%) fue predominante sobre A. coluzzii (11%) y A. arabiensis (3%). Las especies hermanas de Anopheles tenían índices de sangre humana generalmente altos (≥0,82). Sin embargo, las tasas de picadura de A. gambiae (0,92-3,64) fueron más altas que las de A. coluzzii (0-0,84) y A. arabiensis (0-0,27). La infección por esporozoitos de Plasmodium falciparum (3%) solo se encontró en A. gambiae. Conclusión: Si bien la infección por P. falciparum fue del 3%, se podría evaluar mosquiteros insecticidas de larga duración para el control en Malete, particularmente de A. gambiae.

Citas

Alaaya, B. A., Adetimirin, O. I., & Alagbe, A. O. (2013). Investigation of ground water reservoir in Asa and Ilorin west local government of Kwara State using geographic information system. FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013.

Awolola, T. S., Oyewole, I. O., Amajoh, C. N., Idowu, E. T., Ajayi, M. B., Oduola, A., Manafa, O. U., Ibrahim, K., Koekemoer, L. L., & Coetzee, M. (2005). Distribution of the molecular forms of Anopheles gambiae and pyrethroid knock down resistance gene in Nigeria. Acta Tropica, 95(3), 204-209. https://doi.org/10.1016/j.actatropica.2005.06.002

Beier, J. C., Perkins, P. V., Wirtz, R. A., Koros, J., Diggs, D., Gargan, T. P., & Koech, D. K. (1988). Blood meal identification by direct enzyme-linked Immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. Journal of Medical Entomology, 25(1), 9–16. https://doi.org/10.1093/jmedent/25.1.9

Collins, F. H., Mendez, M. A., Rasmussen, M. O., Mehaffey, P. C., Besansky, N. J., & Finnerty, V. A. (1987). Ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. American Journal of Tropical Medicine and Hygiene, 37(1), 37–41. https://doi.org/10.4269/ajtmh.1987.37.37

Favia, G., della Torre, A., Bagayoko, M., Lanfrancotti, A., Sagnon, N., Touré, Y. T., & Coluzzi, M. (1997). Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Molecular Biology, 6(4), 377-383. https://doi.org/10.1046/j.1365-2583.1997.00189.x

Federal Ministry of Health (FMoH) (2014). National Malaria Strategic Plan 2014-2020. https://www.health.gov.ng/doc/NMEP-Strategic-Plan.pdf

Gillies, M. T., & Coetzee, M. A. (1987). Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical region). Publication of South African Institute of Medical Research, (55), 1-143.

Gimonneau, G., Brossettea, L., Mamaïa, W., Dabiré, R. K., & Simard, F. (2014). Larval competition between A. coluzzii and A. gambiae in insectary and semi-field conditions in Burkina Faso. Acta Tropica, 130, 155-161. https://doi.org/10.1016/j.actatropica.2013.11.007

Killeen, G. F., Govella, N. J., Lwetoijera, D. W., & Okumu, F. O. (2016). Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malaria Journal, 15, 225. https://doi.org/10.1186/s12936-016-1280-z

Lehmann, T., & Diabate, A. (2008). The molecular forms of Anopheles gambiae: A phenotypic perspective. Infection Genetics and Evolution, 8(5), 737–746. https://doi.org/10.1016/j.meegid.2008.06.003

Mayagaya, V. S., Nkwengulila, G., Lyimo, I. N., Kihonda, J., Mtambala, H., Ngonyani, H., Russell, T. L., & Ferguson, H. M. (2015). The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania. Malaria Journal, 14, 17. https://doi.org/10.1186/s12936-014-0536-8

National Malaria Elimination Programme (NMEP), National Population Commission (NPopC), National Bureau of Statistics (NBS), and ICF International. (2016). Nigeria Malaria Indicator Survey 2015: Key Indicators. https://dhsprogram.com/pubs/pdf/MIS20/MIS20.pdf

Obembe, A., Oduola, A. O., Oyeniyi, T. A., Olakiigbe, A. K., & Awolola, S. T. (2022). Genetic identity, human blood indices, and sporozoite rates of malaria vectors in Gaa-Bolorunduro, Kwara State, Nigeria. Journal of Infection in Developing Countries, 16(8), 1351-1358. https://doi.org/10.3855/jidc.13429

Obembe, A., Popoola, K. O., Oduola, A. O., & Awolola, S. T. (2018a). Mind the weather: a report on inter-annual variations in entomological data within a rural community under insecticide-treated wall lining installation in Kwara State, Nigeria. Parasites and Vectors, 11, 497. https://doi.org/10.1186/s13071-018-3078-z

Obembe, A., Popoola, K. O., Oduola, A. O., & Awolola, S. T. (2018b). Differential behaviour of endophilic Anopheles mosquitoes in rooms occupied by tobacco smokers and non-smokers in two Nigerian villages. Journal of Applied Sciences and Environmental Management, 22(6), 981-985. https://doi.org/10.4314/jasem.v22i6.23

Obembe, A., Popoola, K. O., Oduola, A. O., Tola, M., Adeogun, A. O., Oyeniyi, T. A., & Awolola, S. T. (2019). Preliminary evaluation of village-scale insecticide-treated durable wall lining against Anopheles gambiae s.l in Akorede, Kwara State, Nigeria. Manila Journal of Science, 12, 1-9.

Oduola, A. O., Adelaja, O. J., Aiyegbusi, Z. O., Tola, M., Obembe, A., Ande, A. T., Omotayo, A. I., & Awolola, S. (2016). Dynamics of Anopheline vector species composition and reported malaria cases during rain and dry seasons in two selected communities in Kwara State. Nigerian Journal of Parasitology, 37(2), 157-163. http://dx.doi.org/10.4314//njpar.v37i2.7

Oduola, A. O., Obembe, A., Lateef, S. A., Abdulbaki, M. K., Kehinde, E. A., Adelaja, O. J., Shittu, O., Tola, M., Oyeniyi, T. A., & Awolola, T. S. (2021). Species composition and Plasmodium falciparum infection rates of Anopheles gambiae s.l. mosquitoes in six localities of Kwara State, North Central, Nigeria. Journal of Applied Sciences and Environmental Management, 25(10), 1801 –1806. http://dx.doi.org/10.4314/jasem.v25i10.8

Scott, J. A., Brogdon, W. G., & Collins, F. H. (1993). Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene, 49(4), 520–529. https://doi.org/10.4269/ajtmh.1993.49.520

Shililu, J. I., Maier, W. A., Seitz, H. M., & Orago, A. S. (1998). Seasonal density, sporozoite rates and entomological inoculation rates of Anopheles gambiae and Anopheles funestus in a high-altitude sugarcane growing zone in western Kenya. Tropical Medicine and International Health, 3(9), 706–710. https://doi.org/10.1046/j.1365-3156.1998.00282.x

Thiaw, O., Doucouré, S., Sougoufara, S., Bouganali, C., Konaté, L., Diagne, N., Faye, O., & Sokhna, C. (2018). Investigating insecticide resistance and knock down resistance (kdr) mutation in Dielmo, Senegal, an area under long lasting insecticidal treated nets universal coverage for 10 years. Malaria Journal, 17, 123. https://doi.org/10.1186/s12936-018-2276-7

Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Disease, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831

Wirtz, R. A., Zavala, F., Charoenvit, Y., Cambell, G. H., Burkot, T. R., Schneider, I., Esser, K. M., Beaudoin, R. L., & Andre, G. R. (1987). Comparative testing of Plasmodium falciparum sporozoite monoclonal antibodies for ELISA development. Bulletin of the World Health Organisation, 65(1), 39–45.

World Health Organization (WHO). (2003). Malaria entomology and vector control: Learner’s guide. http://whqlibdoc.who.int/hq/2003/WHO_CDS_CPE_SMT_2002.18_Rev.1_PartI.pdf

World Health Organization (WHO). (2017). Global vector control response 2017–2030. https://goo.by/c7pAB

World Health Organization (WHO). (2019). World Malaria Report 2019. https://goo.by/reVHZ

World Health Organization (WHO). (2021). World Malaria Report 2021. https://goo.by/SXCAF

Publicado

2023-07-31

Cómo citar

Obembe, A. (2023). Caracterización molecular y riesgos de transmisión de Plasmodium falciparum de mosquitos Anopheles en Malete, Nigeria. UNED Research Journal, 15(2), e4689. https://doi.org/10.22458/urj.v15i2.4689

Número

Sección

Artículos
Loading...