Molecular characterization and Plasmodium falciparum transmission risks of Anopheles mosquitoes in Malete, Nigeria
DOI:
https://doi.org/10.22458/urj.v15i2.4689Keywords:
Mosquito, Anopheles, Malaria transmission, Malete, Kwara State, NigeriaAbstract
Introduction: Studies on malaria vector surveillance are useful for evidence-based control in specific communities. Such studies are lacking in Malete, a rapidly growing peri-urban community in Nigeria. Objective: To assess sibling species identity, human blood indices, and Plasmodium falciparum transmission risks by Anopheles mosquitoes, in Malete. Methods: I collected endophilic mosquitoes quarterly from inhabited houses using the pyrethrum spray catch technique. I identified the mosquitoes, and probed for the presence of human blood and P. falciparum, using standard PCR and ELISA methods, respectively. Results: Anopheles mosquitoes (90%) were the most abundant compared to Culex (10%) and Mansonia (0,5%). Specifically, A. gambiae (85%) were predominant over A. coluzzii (11%) and A. arabiensis (3%). The Anopheles sibling species had generally high human blood indices (≥0,82). However, A. gambiae man-biting rates (0,92-3,64) were higher than A. coluzzii (0-0,84) and A. arabiensis (0-0,27). Plasmodium falciparum sporozoite infection (3%) was found only in A. gambiae. Conclusion: While P. falciparum infection was 3%, long-lasting insecticidal nets should be deployed for control in Malete, particularly of A. gambiae.
References
Alaaya, B. A., Adetimirin, O. I., & Alagbe, A. O. (2013). Investigation of ground water reservoir in Asa and Ilorin west local government of Kwara State using geographic information system. FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6 – 10 May 2013.
Awolola, T. S., Oyewole, I. O., Amajoh, C. N., Idowu, E. T., Ajayi, M. B., Oduola, A., Manafa, O. U., Ibrahim, K., Koekemoer, L. L., & Coetzee, M. (2005). Distribution of the molecular forms of Anopheles gambiae and pyrethroid knock down resistance gene in Nigeria. Acta Tropica, 95(3), 204-209. https://doi.org/10.1016/j.actatropica.2005.06.002
Beier, J. C., Perkins, P. V., Wirtz, R. A., Koros, J., Diggs, D., Gargan, T. P., & Koech, D. K. (1988). Blood meal identification by direct enzyme-linked Immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. Journal of Medical Entomology, 25(1), 9–16. https://doi.org/10.1093/jmedent/25.1.9
Collins, F. H., Mendez, M. A., Rasmussen, M. O., Mehaffey, P. C., Besansky, N. J., & Finnerty, V. A. (1987). Ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. American Journal of Tropical Medicine and Hygiene, 37(1), 37–41. https://doi.org/10.4269/ajtmh.1987.37.37
Favia, G., della Torre, A., Bagayoko, M., Lanfrancotti, A., Sagnon, N., Touré, Y. T., & Coluzzi, M. (1997). Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Molecular Biology, 6(4), 377-383. https://doi.org/10.1046/j.1365-2583.1997.00189.x
Federal Ministry of Health (FMoH) (2014). National Malaria Strategic Plan 2014-2020. https://www.health.gov.ng/doc/NMEP-Strategic-Plan.pdf
Gillies, M. T., & Coetzee, M. A. (1987). Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical region). Publication of South African Institute of Medical Research, (55), 1-143.
Gimonneau, G., Brossettea, L., Mamaïa, W., Dabiré, R. K., & Simard, F. (2014). Larval competition between A. coluzzii and A. gambiae in insectary and semi-field conditions in Burkina Faso. Acta Tropica, 130, 155-161. https://doi.org/10.1016/j.actatropica.2013.11.007
Killeen, G. F., Govella, N. J., Lwetoijera, D. W., & Okumu, F. O. (2016). Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses. Malaria Journal, 15, 225. https://doi.org/10.1186/s12936-016-1280-z
Lehmann, T., & Diabate, A. (2008). The molecular forms of Anopheles gambiae: A phenotypic perspective. Infection Genetics and Evolution, 8(5), 737–746. https://doi.org/10.1016/j.meegid.2008.06.003
Mayagaya, V. S., Nkwengulila, G., Lyimo, I. N., Kihonda, J., Mtambala, H., Ngonyani, H., Russell, T. L., & Ferguson, H. M. (2015). The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania. Malaria Journal, 14, 17. https://doi.org/10.1186/s12936-014-0536-8
National Malaria Elimination Programme (NMEP), National Population Commission (NPopC), National Bureau of Statistics (NBS), and ICF International. (2016). Nigeria Malaria Indicator Survey 2015: Key Indicators. https://dhsprogram.com/pubs/pdf/MIS20/MIS20.pdf
Obembe, A., Oduola, A. O., Oyeniyi, T. A., Olakiigbe, A. K., & Awolola, S. T. (2022). Genetic identity, human blood indices, and sporozoite rates of malaria vectors in Gaa-Bolorunduro, Kwara State, Nigeria. Journal of Infection in Developing Countries, 16(8), 1351-1358. https://doi.org/10.3855/jidc.13429
Obembe, A., Popoola, K. O., Oduola, A. O., & Awolola, S. T. (2018a). Mind the weather: a report on inter-annual variations in entomological data within a rural community under insecticide-treated wall lining installation in Kwara State, Nigeria. Parasites and Vectors, 11, 497. https://doi.org/10.1186/s13071-018-3078-z
Obembe, A., Popoola, K. O., Oduola, A. O., & Awolola, S. T. (2018b). Differential behaviour of endophilic Anopheles mosquitoes in rooms occupied by tobacco smokers and non-smokers in two Nigerian villages. Journal of Applied Sciences and Environmental Management, 22(6), 981-985. https://doi.org/10.4314/jasem.v22i6.23
Obembe, A., Popoola, K. O., Oduola, A. O., Tola, M., Adeogun, A. O., Oyeniyi, T. A., & Awolola, S. T. (2019). Preliminary evaluation of village-scale insecticide-treated durable wall lining against Anopheles gambiae s.l in Akorede, Kwara State, Nigeria. Manila Journal of Science, 12, 1-9.
Oduola, A. O., Adelaja, O. J., Aiyegbusi, Z. O., Tola, M., Obembe, A., Ande, A. T., Omotayo, A. I., & Awolola, S. (2016). Dynamics of Anopheline vector species composition and reported malaria cases during rain and dry seasons in two selected communities in Kwara State. Nigerian Journal of Parasitology, 37(2), 157-163. http://dx.doi.org/10.4314//njpar.v37i2.7
Oduola, A. O., Obembe, A., Lateef, S. A., Abdulbaki, M. K., Kehinde, E. A., Adelaja, O. J., Shittu, O., Tola, M., Oyeniyi, T. A., & Awolola, T. S. (2021). Species composition and Plasmodium falciparum infection rates of Anopheles gambiae s.l. mosquitoes in six localities of Kwara State, North Central, Nigeria. Journal of Applied Sciences and Environmental Management, 25(10), 1801 –1806. http://dx.doi.org/10.4314/jasem.v25i10.8
Scott, J. A., Brogdon, W. G., & Collins, F. H. (1993). Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene, 49(4), 520–529. https://doi.org/10.4269/ajtmh.1993.49.520
Shililu, J. I., Maier, W. A., Seitz, H. M., & Orago, A. S. (1998). Seasonal density, sporozoite rates and entomological inoculation rates of Anopheles gambiae and Anopheles funestus in a high-altitude sugarcane growing zone in western Kenya. Tropical Medicine and International Health, 3(9), 706–710. https://doi.org/10.1046/j.1365-3156.1998.00282.x
Thiaw, O., Doucouré, S., Sougoufara, S., Bouganali, C., Konaté, L., Diagne, N., Faye, O., & Sokhna, C. (2018). Investigating insecticide resistance and knock down resistance (kdr) mutation in Dielmo, Senegal, an area under long lasting insecticidal treated nets universal coverage for 10 years. Malaria Journal, 17, 123. https://doi.org/10.1186/s12936-018-2276-7
Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Disease, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831
Wirtz, R. A., Zavala, F., Charoenvit, Y., Cambell, G. H., Burkot, T. R., Schneider, I., Esser, K. M., Beaudoin, R. L., & Andre, G. R. (1987). Comparative testing of Plasmodium falciparum sporozoite monoclonal antibodies for ELISA development. Bulletin of the World Health Organisation, 65(1), 39–45.
World Health Organization (WHO). (2003). Malaria entomology and vector control: Learner’s guide. http://whqlibdoc.who.int/hq/2003/WHO_CDS_CPE_SMT_2002.18_Rev.1_PartI.pdf
World Health Organization (WHO). (2017). Global vector control response 2017–2030. https://goo.by/c7pAB
World Health Organization (WHO). (2019). World Malaria Report 2019. https://goo.by/reVHZ
World Health Organization (WHO). (2021). World Malaria Report 2021. https://goo.by/SXCAF
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UNED Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.