Evaluación rápida de mamíferos no voladores en tres niveles de perturbación humana, Refugio Nacional de Vida Silvestre Hacienda Barú, Costa Rica

Evaluación rápida de mamíferos no voladores en tres niveles de perturbación humana, Refugio Nacional de Vida Silvestre Hacienda Barú, Costa Rica

Autores/as

DOI:

https://doi.org/10.22458/urj.v15i1.4558

Palabras clave:

conservación, protección, primer estudio, bosque, tierras bajas

Resumen

Introducción: El cambio del uso natural de la tierra se ha convertido en uno de los principales impulsores de la pérdida de biodiversidad en todo el mundo. Los mamíferos son componentes importantes de los bosques porque afectan la estructura y composición del bosque, pero pocos estudios han comparado a los mamíferos en áreas tropicales con diferentes niveles de perturbación humana. Objetivo: Realizar una evaluación rápida de los mamíferos no voladores en el Refugio Nacional de Vida Silvestre Hacienda Barú, Costa Rica, en tres zonas con diferentes niveles de perturbación humana. Métodos: del 18 al 21 de julio de 2019, identificamos mamíferos no voladores con avistamiento en senderos, cámaras trampa y trampas Sherman. Resultados: Identificamos 17 especies, sin diferencias entre zonas. Las más comunes fueron Cebus imitador y Pecari tajacu, la planta más utilizada fue Mangifera indica. Conclusión: Este estudio identificó 17 mamíferos no voladores en esta reserva.

Citas

Andresen, E., Arroyo-Rodríguez, V., & Ramos-Robles, M. (2018). Primate seed dispersal: old and new challenges. International Journal of Primatology, 39(3), 443-465. https://doi.org/10.1007/s10764-018-0024-z

Bogoni, J. A., Cherem, J. J., Hettwer Giehl, E. L., Oliveira-Santos, L. G., de Castilho, P. V., Picinatto, V., Moreli, F., Tortato, M., Ribeiro, M., & Graipel, M. E. (2016). Landscape features lead to shifts in communities of medium-to large-bodied mammals in subtropical Atlantic Forest. Journal of Mammalogy, 97(3), 713-725. https://doi.org/10.1093/jmammal/gyv215

Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the national academy of sciences, 114(30), E6089-E6096. https://doi.org/10.1073/pnas.1704949114

Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M., & Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in ecology & evolution, 15(7), 290-295. https://doi.org/10.1016/S0169-5347(00)01876-0

Dudley, N., Parrish, J. D., Redford, K. H., & Stolton, S. (2010). The revised IUCN protected area management categories: the debate and ways forward. Oryx, 44(4), 485-490. doi:10.1017/S0030605310000566

Gomez-Romero, M. (2020). Dinámica Poblacional y dieta del Cebus capucinus (Primates: Cebidae), en el refugio de vida silvestre Barú, Puntarenas, Costa Rica. Revista Ecología y Desarrollo Sostenible, 2, 1-15. https://revistas.ulatina.ac.cr/index.php/ecologia/article/view/343

Hagger, V., Fisher, D., Schmidt, S., & Blomberg, S. (2013). Assessing the vulnerability of an assemblage of subtropical rainforest vertebrate species to climate change in south‐east Queensland. Austral Ecology, 38(4), 465-475. https://doi.org/10.1111/j.1442-9993.2012.02437.x

Holdridge, L. R. (1987). Ecología basada en zonas de vida (No. 83). Agroamérica.

Fedriani, J. M., & Delibes, M. (2009). Seed dispersal in the Iberian pear, Pyrus bourgaeana: a role for infrequent mutualists. Ecoscience, 16(3), 311-321. https://doi.org/10.2980/16-3-3253

Fialho, M. Y., Cerboncini, R. A., & Passamani, M. (2019). Linear forest patches and the conservation of small mammals in human-altered landscapes. Mammalian Biology, 96(1), 87-92. https://doi.org/10.1016/j.mambio.2018.11.002

Jules, E. S., & Shahani, P. (2003). A broader ecological context to habitat fragmentation: why matrix habitat is more important than we thought. Journal of Vegetation Science, 14(3), 459-464. https://doi.org/10.1111/j.1654-1103.2003.tb02172.x

Ladle, R., Jepson, P., Malhado, A., Jennings, S., & Barua, M. (2011). The causes and biogeographical significance of species’ rediscovery. Frontiers of Biogeography, 3(3), 111-118. https://doi.org/10.21425/F5FBG12432

Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in ecology & evolution, 29(2), 107-116. https://doi.org/10.1016/j.tree.2013.12.001

Li, W., Yang, P., Li, B., Liu, C., Sun, L., & Li, J. (2021). Habitat characteristics or protected area size: What is more important for the composition and diversity of mammals in nonprotected areas?. Ecology and Evolution, 11(12), 7250-7263. https://doi.org/10.1002/ece3.7540

Meyer, C., Kreft, H., Guralnick, R., & Jetz, W. (2015). Global priorities for an effective information basis of biodiversity distributions. Nature communications, 6(1), 1-8. https://doi.org/10.1038/ncomms9221

Moore, J. F., Pine, W. E., Mulindahabi, F., Niyigaba, P., Gatorano, G., Masozera, M. K., & Beaudrot, L. (2020). Comparison of species richness and detection between line transects, ground camera traps, and arboreal camera traps. Animal Conservation, 23(5), 561-572. https://doi.org/10.1111/acv.12569

Newbold, T., Hudson, L. N., Hill, S., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M., Alhusseini, T., Ingram, D. J., Itescu, Y., ... & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324

Passamani, M., & Fernandez, F. A. S. (2011). Abundance and richness of small mammals in fragmented Atlantic Forest of southeastern Brazil. Journal of Natural History, 45(9-10), 553-565. https://doi.org/10.1080/00222933.2010.534561

Smith, T. B., Kark, S., Schneider, C. J., Wayne, R. K., & Moritz, C. (2001). Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends in Ecology & Evolution, 16(8), 431.

Stolton, S., Redford, K. H., & Dudley, N. (2014). The futures of privately protected areas. IUCN.

The Weather Channel. (2023). Tiempo Mensual. An IBM Business. https://weather.com/

Treves, A., Mwima, P., Plumptre, A. J., & Isoke, S. (2010). Camera-trapping forest-woodland wildlife of western Uganda reveals how gregariousness biases estimates of relative abundance and distribution. Biological Conservation, 143(2), 521-528. https://doi.org/10.1016/j.biocon.2009.11.025

UNEP-WCMC & IUCN. (2016). Protected Planet Report 2016. https://bit.ly/3ppK8MP

Valdez, C. G., Guzmán, M. A., Valdés, A., Forougbakhch, R., Alvarado, M. A., & Rocha, A. (2018). Estructura y diversidad de la vegetación en un matorral espinoso prístino de Tamaulipas, México. Revista de Biología Tropical, 66(4), 1674-1682. http://dx.doi.org/10.15517/rbt.v66i4.32135

Volenec, Z. M., & Dobson, A. P. (2020). Conservation value of small reserves. Conservation Biology, 34(1), 66-79. https://doi.org/10.1111/cobi.13308

Publicado

2023-05-30

Cómo citar

Fallas Madrigal, D., Sanchez-González, C., González-Mora, D., Chavarría-Arroyo, M., & Penit-Llobet, M. (2023). Evaluación rápida de mamíferos no voladores en tres niveles de perturbación humana, Refugio Nacional de Vida Silvestre Hacienda Barú, Costa Rica. UNED Research Journal, 15(1), e4558. https://doi.org/10.22458/urj.v15i1.4558

Número

Sección

Comunicación Breve
Loading...