Efecto del tamaño de trampa al cuantificar la caída de material vegetal

Efecto del tamaño de trampa al cuantificar la caída de material vegetal

Autores/as

  • Sergio Gabriel Quesada-Acuña Universidad Estatal a Distancia, Vicerrectoría de Investigación, Laboratorio de Ecología Urbana, 2050 Sabanilla, San José, Costa Rica https://orcid.org/0000-0002-9842-8501
  • Gabriela Pérez-Gómez Universidad Estatal a Distancia, Vicerrectoría de Investigación, Laboratorio de Vida Silvestre y Salud, 2050 Sabanilla, San José, Costa Rica https://orcid.org/0000-0002-5527-4186

DOI:

https://doi.org/10.22458/urj.v15i1.4368

Palabras clave:

dispersión, lluvia de semillas, parque urbano, regeneración natural, tamaño de trampa, trampa de semillas

Resumen

Introducción: Muchos fenómenos naturales estudiados en ecología (como lluvia de semillas y producción de hojarasca) requieren métodos cuantitativos que recolecten datos in absentia, por ejemplo, las trampas. Las trampas varían en forma, tamaño y material, y se debe considerar cuidadosamente su selección. Hay pocos estudios que comparen el desempeño de trampas de diferentes tamaños y su efecto en las estimaciones. Objetivo: Comparar dos tamaños de una trampa común diseñada para cuantificar la caída de material vegetal. Métodos: En un parque urbano tropical en San José, Costa Rica, colocamos un total de 74 trampas cuadradas (trampa grande = 0,50m2, con una subsección concéntrica de 0,25m2 que representa la trampa pequeña) en tres microhábitats (pasto; borde del bosque y bajo árboles aislados). Desde julio de 2021 hasta junio de 2022, recolectamos el contenido de las trampas dos veces al mes (esfuerzo de muestreo anual: 144 horas por trampa). Resultados: la trampa grande da como resultado estimaciones de densidad más bajas, lo que genera errores y desviaciones estándar más altos. La trampa pequeña estima densidades más altas, pero reduce la desviación estándar y el error. Los coeficientes de variación de ambas trampas fueron similares. Conclusión: Los estudios con trampas de vegetación deben considerar el efecto del tamaño de trampa en las estimaciones de densidad, el error estimado y las desviaciones estándar.

Citas

Bach, C. E., & Kelly, D. (2004). Effects of forest edges, fruit display size, and fruit colour on bird seed dispersal in a New Zealand mistletoe, Alepis flavida. New Zealand Journal of Ecology, 28(1), 93-103.

Barrientos, Z. (2010). Contaminación atmosférica en la Meseta Central de Costa Rica. Biocenosis, 23(1), 50-54.

Barrientos, Z., & Monge-Nájera, J. (2011). Ecología de ciudad: lo que todos debemos saber sobre los ecosistemas urbanos. Biocenosis, 25(1-2), 20-26.

Beckman, N. G., & Muller-Landau, H. C. (2007). Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two neotropical tree species. Biotropica, 39(3), 328-339. https://doi.org/10.1111/j.1744-7429-2007-00273-x.

Carr, R. (2017). XLStatistics: Excel workbooks for statistical analysis. Versión 17-02-16. https://www.deakin.edu.au/individuals-sites/?request=~rodneyc/XLStatistics.r

Celentano, D., Zahawi, R. A., Finegan, B., Casanoves, F., Ostertag, R., Cole, R. J., & Holl, K. D. (2011). Restauración ecológica de bosques tropicales en Costa Rica: efecto de varios modelos en la producción, acumulación y descomposición de hojarasca. Revista de Biología Tropical, 59(3), 1323-1336.

Chabrerie, O., & Alard, D. (2005). Comparison of three seed trap types in a chalk grassland: toward a standardized protocol. Plant Ecology, 176, 101-112. https://doi.org/10.1007/s11258-004-0024-2.

Charles, L. S., Dwyer, J. M., Chapman, H. M., Yadok, B. G., & Mayfield, M. M. (2019). Landscape structure mediates zoochorous-dispersed seed rain under isolated pasture trees across distinct tropical regions. Landscape Ecology, 34, 1347-1362. https://doi.org/10.1007/s10980-019-00846-3.

Cole, R. J., Holl, K. D., & Zahawi, R. A. (2010). Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecological Applications, 20(5), 1255-1269. https://doi.org/10.1890/09-0714.1.

Cottrell, T. R. (2004). Seed rain traps for forest lands: considerations for trap construction and study design. BC Journal of Ecosystems and Management, 5(1), 1-6.

Dosch, J. J., Peterson, C. J., & Haines, B. L. (2007). Seed rain during initial colonization of abandoned pastures in the premontane wet forest zone of southern Costa Rica. Journal of Tropical Ecology, 23, 151-159. https://doi.org/10.1017/S0266467406003853.

Forman, R. T. T. (2008). Urban regions: ecology and planning beyond the city. Cambridge University Press.

Fujita, M., & Koike, F. (2009). Landscape effects on ecosystems: birds as active vectors of nutrient transport to fragmented urban forests versus forest-dominated landscapes. Ecosystems, 12, 391-400. https://doi.org/10.1007/s10021-009-9230-z.

Godínez-Ibarra, O., Ángeles-Pérez, G., López-Mata, L., García-Moya, E., Valdez-Hernández, J. I., DelosSantos-Posadas, H., & Trinidad-Santos, A. (2007). Lluvia de semillas y emergencia de plántulas de Fagus grandifolia subsp. mexicana en La Mojonera, Hidalgo, México. Revista Mexicana de Biodiversidad, 78, 117-128.

Holdridge, L. R. (1982). Ecología basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura (IICA).

Ingle, N. R. (2003). Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation. Oecologia, 134, 251-261. https://doi.org/10.1007/s00442-002-1081-7.

Jackel, A. K., & Poschlod, P. (1994). Diaspore production and the influence of the size of diaspore trap on the quantitative result of seasonal diaspore rain in two calcareous grassland sites. Berichte des Instituts für Landschafts und Pflanzenökologie der Universität Hohenheim, 3, 123-132.

Kelm, D. H., Wiesner, K. R., & Helversen, O. V. (2008). Effects of artificial roosts for frugivorous bats on seed dispersal in a neotropical forest pasture mosaic. Conservation Biology, 22(3), 733-741. https://doi.org/10.1111/j.1523-1739.2008.00925.x.

Kollmann, J., & Goetze, D. (1998). Notes on seed traps in terrestrial plan communities. Flora, 193, 31-40. https://doi.org/10.1016/S0367-2530(17)30813-7.

LaMantia, T., Rühl, J., Massa, B., Pipitone, S., LoVerde, G., & Bueno, R. S. (2019). Vertebrate-mediated seed rain and artificial perches contribute to overcome seed dispersal limitation in a Mediterranean old field. Restoration Ecology, 27(6), 1393-1400. https://doi.org/10.1111/rec.13009.

Lowry, R. (2022, agosto). VassarStats: Website for statistical computation. http://vassarstats.net/.

MacGregor-Fors, I. (2019). De mitos a hitos urbanos: ¿Cómo hacer ecología en selvas de asfalto? En Zuria, I., Olvera-Ramírez, A. M., & Ramírez-Bastida, P. (Eds.). Manual de técnicas para el estudio de fauna nativa en ambientes urbanos (pp. 19-38). Universidad Autónoma de Querétaro.

Miranda, A., Vásquez, I. A., Becerra, P., Smith-Ramírez, C., Delpiano, C. A., Hernández-Moreno, A., & Altamirano, A. (2019). Traits of perch trees promote seed dispersal of endemic fleshy-fruit species in degraded areas of endangered Mediterranean ecosystems. Journal of Arid Environments, 170, 103995. https://doi.org/10.1016/j.jaridenv.2019.103995.

Page, M. J., Newlands, L., & Eales, J. (2002). Effectiveness of three seed-trap designs. Australian Journal of Botany, 50, 587-594. https://doi.org/10.1071/BT02017.

Pejchar, L., Pringle, R. M., Ranganathan, J., Zook, J. R., Durán, G., Oviedo, F., & Daily, G. C. (2008). Birds as agents of seed dispersal in a human-dominated landscape of southern Costa Rica. Biological Conservation, 141, 536-544. https://doi.org/10.1016/j.bio.con-2007-11008.

R Development Core Team (2022). The R project for statistical computing. https://www.r-project.org/about.html.

Reid, J. L., Katsuki, K. N., & Holl, K. D. (2012). Do birds bias measurements of seed rain? Tropical Ecology, 28, 421-422. https://doi.org/10.1017/S.0266467412.000247.

Rodríguez-Santamaría, M. F., Puentes-Aguilar, J. M., & Cortés-Pérez, F. (2006). Caracterización temporal de la lluvia de semillas en un bosque nublado del cerro de Mamapacha (Boyacá-Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 30(117), 619-624.

Sheldon, K. S., & Nadkarni, N. M. (2013). Spatial and temporal variation of seed rain in the canopy and on the ground of a tropical cloud forest. Biotropica, 45(5), 549-556. http://dx.doi.org/10.1111/btp.12043.

Slocum, M. G., & Horvitz, C. C. (2000). Seed arrival under different genera of trees in a neotropical pasture. Plant Ecology, 149, 51-62.

Tomazi, A. L., Zimmermann, C. E., & Laps, R. R. (2010). Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and natural regeneration. Biotemas, 23(3), 125-135.

Vásquez, E. R., & Caballero, A. (2011). Inconsistencia del coeficiente de variación para expresar la variabilidad de un experimento en un modelo de análisis de varianza. Cultivos tropicales, 32(3), 59-62.

Vicente, R., Martins, R., Zocche, J. J., & Harter-Marques, B. (2010). Seed dispersal by birds on artificial perches in reclaimed areas after surface coal mining in Siderópolis municipality, Santa Catarina State, Brazil. Brasileira de Biociencias, 8(1), 14-23.

Wijdeven, S. M. J., & Kuzee, M. E. (2000). Seed availability as a limiting factor in forest recovery processes in Costa Rica. Restoration Ecology, 8(4), 414-424.

Wood, T. E., Lawrence, D., & Clark, D. A. (2005). Variation in leaf litter nutrients of a Costa Rican rain forest is related to precipitation. Biogeochemistry, 73, 417-437. https://doi.org/10.1007/s10533-004-0563-6.

Publicado

2023-02-03

Cómo citar

Quesada-Acuña, S. G., & Pérez-Gómez, G. (2023). Efecto del tamaño de trampa al cuantificar la caída de material vegetal. UNED Research Journal, 15(1), e4368. https://doi.org/10.22458/urj.v15i1.4368

Número

Sección

Artículos
Loading...