Evaluación de riesgo por arsénico, en bajas concentraciones, para trabajadores agrícolas de Cartago, Costa Rica
DOI:
https://doi.org/10.22458/urj.v14i2.4070Palabras clave:
carga de enfermedad, calidad de agua, AVAD, salud ambiental, salud ocupacionalResumen
Introducción: El arsénico, elemento que puede ser nocivo para la salud humana, es abundante en el ambiente. Fue una de las primeras sustancias reconocidas como cancerígenas y su presencia en el agua es común en América Latina. Sus niveles en fuentes de agua son relevantes para la toma de decisiones y control sanitario. Este estudio es el primero en América Latina con un modelo matemático de riesgo y carga de enfermedad. Objetivo: Evaluar la exposición a niveles bajos de arsénico en trabajadores agrícolas, de una cuenca costarricense, con esta nueva técnica. Métodos: Muestreamos arsénico en tres puntos a lo largo del río Purires, Cartago, entre septiembre de 2011 y agosto de 2012. Usamos estimaciones de “valor censurado”; evaluación de riesgos con modelos exponenciales cuadráticos y simulaciones de Monte Carlo para determinar el riesgo de cáncer, según tipo y vía de exposición durante el riego, para trabajadores agrícolas. Resultados: Las concentraciones no difirieron por sitio, pero fueron mayores en la época seca. El nivel de riesgo y la carga de enfermedad no fueron aceptables. La carga de enfermedad es un indicador más riguroso que el cálculo individual de probabilidad. Nuestro nivel de riesgo estimado es bajo en comparación con estudios hechos fuera de la región, pero no es comparable con trabajos anteriores en América Latina, basados en un método diferente. Conclusión: Hace una década, en la cuenca Purires, las concentraciones de arsénico eran más altas en la época seca y el nivel de riesgo y la carga de enfermedad no eran aceptables.
Citas
Alonso, D. L., Latorre, S., Castillo, E., & Brandão, P. F. B. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, 186, 272–281. https://doi.org/10.1016/j.envpol.2013.12.009
Astorga, Y. (2007). Diagnóstico de la Microcuenca del Río Purires. https://fdocuments.es/document/diagnostico-micro-cuenca-rio-purires.html?page=1
Barrantes, K., Chacon, L., Solano, M., & Achí, R. (2013). Contaminación fecal del agua superficial de la microcuenca del río Purires, Costa Rica, 2010-2011. Revista de La Sociedad Venezolana de Microbiología, 33, 40–45.
Bundschuh, J., Armienta, M. A., Morales-Simfors, N., Alam, M. A., López, D. L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L. M., Altamirano Espinoza, M., Guimarães Guilherme, L. R., Sosa, N. N., Niazi, N. K., Tomaszewska, B., Lizama Allende, K., Bieger, K., … Ahmad, A. (2020). Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 51(16), 1–139. https://doi.org/10.1080/10643389.2020.1770527
Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., Liu, C. W., López, D., Armienta, M. A., Guilherme, L. R. G., Cuevas, A. G., Cornejo, L., Cumbal, L., & Toujaguez, R. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2-35. https://doi.org/10.1016/j.scitotenv.2011.06.024
Chacón, L., Arias, V., Barrantes, K., Beita-Sandí, W., Reyes, L., & Achí, R. (2018). Enterococci as a key parameter for water quality index: Purires River, Costa Rica. Journal of Water and Health, 16(6), 1007–1017. https://doi.org/10.2166/wh.2018.087
Cherrie, J. W. (2010). Assessing the effectiveness of control. In J. Cherrie, R. Howie & S. Semple (Eds.). Monitoring for Health Hazards at Work (4th ed. Pp:225-272). Wiley-Blackwell
Córdoba, J. (2012). Análisis de vulnerabilidad de las comunidades de Coris y Tablón, Provincia de Cartago, Costa Rica. Revista Ciencias Espaciales, 8(1), 231-259. https://www.lamjol.info/index.php/CE/article/view/2051/1846
Devleesschauwer, B., Havelaar, A. H., Maertens De Noordhout, C., Haagsma, J. A., Praet, N., Dorny, P., Duchateau, L., Torgerson, P. R., Van Oyen, H., & Speybroeck, N. (2014). DALY calculation in practice: A stepwise approach. International Journal of Public Health, 59(3), 571–574. https://doi.org/10.1007/s00038-014-0553-y
Dore, M. H. (2015). Global drinking water management and conservation: Optimal decision-making. Springer International Publishing. https://doi.org/10.1007/978-3-319-11032-5
Eaton, A., Clesceri, L.S., Franson, M. A. H., Rice, E. W., & Greanberg, A. E. (Eds.). (2005). Standard Methods of Examination Water and Wastewater (Vol 21). American Public Health Association.
Fernández-Macías, J. C., González-Mille, D. J., García-Arreola, M. E., Cruz-Santiago, O., Rivero-Pérez, N. E., Pérez-Vázquez, F., & Ilizaliturri-Hernández, C. A. (2020). Integrated probabilistic risk assessment in sites contaminated with arsenic and lead by long-term mining liabilities in San Luis Potosi, Mexico. Ecotoxicology and Environmental Safety, 197, 110568. https://doi.org/10.1016/j.ecoenv.2020.110568
Gentry, P. R., Clewell, H. J., Greene, T. B., Franzen, A. C., & Yager, J. W. (2014). The impact of recent advances in research on arsenic cancer risk assessment. Regulatory Toxicology and Pharmacology, 69(1), 91–104. https://doi.org/10.1016/j.yrtph.2014.02.006
Havelaar, A. H., & Melse, J. M. (2003). Quantifying public health risk in the WHO Guidelines for Drinking Water Quality. https://bit.ly/3zt74xg
Helsel, D. R. (2012). Statistics for censored environmental data using Minitab® and R (2nd ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118162729
Herrera-Murillo, J., Mora-Campos, D., Suarez-Serrano, A., Chaves-Villalobos, M., Salas-Jiménez, P., Gamboa-Jiménez, A., & Anchía-Leitón, D. (2019). Determinación de los niveles de arsénico presentes en sistemas de abastecimiento de agua de las regiones Chorotega y Huetar Norte de Costa Rica, América Central. Revista Geográfica de América Central, 4(61E), 101. https://doi.org/10.15359/rgac.61-4.5
Instituto Nacional de Estadística y Censos (INEC). (2015). VI Censo Nacional Agropecuario. https://bit.ly/3QybnNs
Instituto Nacional de Estadística y Censos (INEC). (2021). Estimaciones y proyecciones de población. https://bit.ly/3Ac97Gh
Khan, K. M., Chakraborty, R., Bundschuh, J., Bhattacharya, P., & Parvez, F. (2020). Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Science of the Total Environment, 710, 136071. https://doi.org/10.1016/j.scitotenv.2019.136071
Lamm, S. H., Boroje, I. J., Ferdosi, H., & Ahn, J. (2021). A review of low-dose arsenic risks and human cancers. Toxicology, 456, 152768. https://doi.org/10.1016/j.tox.2021.152768
Laskar, M., Gazi, E., Basu, B., Chowdhury, S., Ahmad, S., & Khan, M. (2015). Disability adjusted life years among arsenicosis patients in an arsenic-affected area of southern Bangladesh. Mediscope, 2(1), 4–12. https://doi.org/10.3329/mediscope.v2i1.24733
Leonarduzzi, E., Lunguni, I., & Colussi, C. (2020). Evaluación de poblaciones rurales expuestas a arsénico en el agua de consumo en la Provincia de Santa Fe, Argentina. Estrategias de comunicación y prevención de riesgos. Revista de Salud Ambiental, 20(2), 150–159.
Martínez-Acuña, M. I., Mercado-Reyes, M., Alegría-Torres, J. A., & Mejía-Saavedra, J. J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environmental Monitoring and Assessment, 188, 476. https://doi.org/10.1007/s10661-016-5453-6
McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., Lepori, E. V., Ahsan, H., & Parvez, F. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76–91. https://doi.org/10.1016/j.scitotenv.2011.08.051
Mendoza, O., Sánchez, R., Barrón, J., Cuevas, H., Escalante, P., & Solano, R. (2017). Riesgos potenciales de salud por consumo de agua con arsénico en Colima , México. Salud Pública De México, 59(1), 34-40
Montazar, A., Cahn, M., & Putman, A. (2019). Research advances in adopting drip irrigation for california organic spinach: Preliminary findings. Agriculture, 9(8), 1–14. https://doi.org/10.3390/agriculture9080177
Montero-Campos, V., Quesada-Kimsey, J., Ledezma-Espinoza, A., & Sandoval-Mora, J. A. (2010). Determinación de arsénico en abastecimientos de agua para consumo humano de la provincia de Cartago, Costa Rica. Acta Médica Costarricense, 52(2), 96-101. https://doi.org/10.51481/amc.v52i2.642
Morales, K. H., Ryan, L., Kuo, T. L., Wu, M. M., & Chen, C. J. (2000). Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives, 108(7), 655–661. https://doi.org/10.1289/ehp.00108655
Nasrabadi, T., Abbasi Maedeh, P., Sirdari, Z. Z., Shirani Bidabadi, N., Solgi, S., & Tajik, M. (2015). Analyzing the quantitative risk and hazard of different waterborne arsenic exposures: case study of Haraz River, Iran. Environmental Earth Sciences, 74(1), 521–532. https://doi.org/10.1007/s12665-015-4058-7
Navoni, J. A., De Pietri, D., Olmos, V., Gimenez, C., Bovi Mitre, G., de Titto, E., & Villaamil Lepori, E. C. (2014). Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina. Science of the Total Environment, 499, 166–174. https://doi.org/10.1016/j.scitotenv.2014.08.058
NCD Risk Factor Collaboration (NCD RisC). (2017). Country profile: Costa Rica. https://www.ncdrisc.org/country-profile.html
National Reasearch Council (NRC). (2001). Arsenic in Drinking Water: 2001 Update The National Academies Press. https://doi.org/10.17226/10194
Ogamba, E. N., Charles, E. E., & Izah, S. C. (2021). Distributions, pollution evaluation and health risk of selected heavy metal in surface water of Taylor creek, Bayelsa State, Nigeria. Toxicology and Environmental Health Sciences, 13(2), 109–121. https://doi.org/10.1007/s13530-020-00076-0
Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J. C., Arellano-Mendoza, M. G., Tamay-Cach, F., Valenzuela-Limón, O. L., García-Montalvo, E. A., & Hernández-Zavala, A. (2020). Arsenic exposure: A public health problem leading to several cancers. Regulatory Toxicology and Pharmacology, 110, 104539. https://doi.org/10.1016/j.yrtph.2019.104539
Quintanilla, B. (2017). Estadística en variables con censura: aplicación a datos medioambientales [Tesis de Maestria, Universitat Oberta de Catalunya]. https://bit.ly/3b6lTw2
Robson, M., & Toscano, W. (2007). Risk assessment for environmental health. John Wiley & Sons, Inc.
Salles, F. J., de Toledo, M. C. B., César, A. C. G., Ferreira, G. M., & Barbério, A. (2016). Cytotoxic and genotoxic assessment of surface water from São Paulo State, Brazil, during the rainy and dry seasons. Ecotoxicology, 25(4), 633–645. https://doi.org/10.1007/s10646-016-1622-1
Savarimuthu, X., Hira-Smith, M. M., Yuan, Y., von Ehrenstein, O. S., Das, S., Ghosh, N., Guha Mazumder, D. N., & Smith, A. H. (2006). Seasonal variation of arsenic concentrations in Tubewells in West Bengal, India. Journal of Health, Population and Nutrition, 24(3), 277–281. https://doi.org/10.3329/jhpn.v24i3.713
Sharma, S., Kaur, J., Nagpal, A. K., & Kaur, I. (2016). Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs. Environmental Monitoring and Assessment, 188(9), 506. https://doi.org/10.1007/s10661-016-5507-9
Smith, A. H., Ercumen, A., Yuan, Y., & Steinmaus, C. M. (2009). Increased lung cancer risks are similar whether arsenic is ingested or inhaled. Journal of Exposure Science and Environmental Epidemiology, 19(4), 343–348. https://doi.org/10.1038/jes.2008.73
Timm, C., Luther, S., Jurzik, L., Hamza, I. A., & Kistemann, T. (2016). Applying QMRA and DALY to assess health risks from river bathing. International Journal of Hygiene and Environmental Health, 219(7), 681-692. https://doi.org/10.1016/j.ijheh.2016.07.017
Tsuji, J. S., Chang, E. T., Gentry, P. R., Clewell, H. J., Boffetta, P., & Cohen, S. M. (2019). Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Critical Reviews in Toxicology, 49(1), 36-84. https://doi.org/10.1080/10408444.2019.1573804
Tsuji, J. S., Garry, M. R., Perez, V., & Chang, E. T. (2015). Low-level arsenic exposure and developmental neurotoxicity in children: A systematic review and risk assessment. Toxicology, 337, 91–107. https://doi.org/10.1016/j.tox.2015.09.002
Tsuji, J. S., Lennox, K. P., Watson, H. N., & Chang, E. T. (2021). Essential concepts for interpreting the dose-response of low-level arsenic exposure in epidemiological studies. Toxicology, 457, 152801. https://doi.org/10.1016/j.tox.2021.152801
United States Environmental Protection Agency (US EPA). (1988). Special report on ingested inorganic arsenic: skin cancer; nutritional essentiality (EPA/625/3-89/013). https://archive.epa.gov/raf/web/pdf/epa_625_3-87_013.pdf
United States Environmental Protection Agency (US EPA). (1989). Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). EPA/540/1-89/002. https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf
United States Environmental Protection Agency (US EPA). (2011). Exposure factors handbook 2011 Edition (Final Report). (EPA/600/R-090/052F). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
Veas, N. (2011). Gestión del agua para consumo humano en la microcuenca del río Purires, [Tesis Maestria, Cetro Agonómico Tropical de Investigación y Enseñanza (CATIE)]. https://bit.ly/3v8jwQo
World Health Organization (WHO). (2006). Who Guidelines for the safe use wastewater, excreta and greyewater. Volumen I policy and regulatory aspects. https://www.who.int/publications/i/item/9241546824
World Health Organization (WHO). (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. https://bit.ly/2MUdxrb
Wilbers, G. J., Becker, M., Nga, L. T., Sebesvari, Z., & Renaud, F. G. (2014). Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Science of the Total Environment, 485-486(1), 653–665. https://doi.org/10.1016/j.scitotenv.2014.03.049
Zhang, H., Chang, S., Wang, L., & Wang, W. (2018). Estimating and comparing the cancer risks from THMs and low-level arsenic in drinking water based on disability-adjusted life years. Water Research, 145, 83-93. https://doi.org/10.1016/j.watres.2018.08.012
Zhang, H., Wang, L., Wang, Y., & Chang, S. (2020). Using disability-adjusted life years to estimate the cancer risks of low-level arsenic in drinking water. Journal of Environmental Science and Health, Part A, 55(1), 63–70. https://doi.org/10.1080/10934529.2019.1667167
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 UNED Research Journal
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Nota: Este resumen contiene un copyright incorrecto debido a problemas técnicos. Los autores que publican en esta revista aceptan los siguientes términos: Los autores conservan los derechos de autor y otorgan a la revista el derecho de primera publicación, con la obra simultáneamente bajo una Licencia de Atribución de Creative Commons que permite a otros compartir la obra con el reconocimiento de la autoría y la publicación inicial en esta revista.
Los contenidos se pueden reproducir citando la fuente según la licencia de Acceso Abierto CC BY 4.0. El almacenamiento automático en repositorios está permitido para todas las versiones. Incentivamos a los autores a publicar los datos originales y bitácoras en repositorios públicos, y a incluir los enlaces en todos los borradores para que los revisores y lectores puedan consultarlos en cualquier momento.
La revista está financiada con fondos públicos a través de la Universidad Estatal a Distancia. La independencia editorial y el cumplimiento ético están garantizados por la Comisión de Editores y Directores de Revistas de la UNED. No publicamos pautas publicitarias pagadas ni recibimos financiamiento de la empresa privada.