Risk assessment for arsenic, in low concentrations, for agricultural workers in Cartago, Costa Rica

Risk assessment for arsenic, in low concentrations, for agricultural workers in Cartago, Costa Rica

Authors

DOI:

https://doi.org/10.22458/urj.v14i2.4070

Keywords:

Disease burden, water quality, DALY, environmental health, occupational health

Abstract

Introduction: Arsenic, an element that can be harmful to human health, is abundant in the environment. It was among the first substances recognized as carcinogenic, and its presence in water is common in Latin America. Its levels in water sources are relevant for decision-making and sanitary control. This study is the first in Latin America with a mathematical model of the risk and burden of disease. Objective: To evaluate the exposure to low levels of arsenic in agricultural workers in a Costa Rican basin with this new technique. Methods: We sampled arsenic in three points along the Purires River, Cartago, between September 2011 and August 2012. We used “censored value” estimates; risk assessment with quadratic exponential models and Monte Carlo simulations to determine the risk of cancer, for agricultural workers, by type and route of exposure during irrigation. Results: Concentrations did not differ by site, but were higher in the dry season. The risk level and burden of disease were not acceptable. Disease burden is a more rigorous indicator than the individual calculation of probability of occurrence. Our estimated risk level is low compared to other studies outside the region, but not comparable to previous work in Latin America, which used a different method. Conclusion: A decade ago, in the Purires basin, arsenic concentrations were higher in the dry season and the risk level and burden of disease were not acceptable.

References

Alonso, D. L., Latorre, S., Castillo, E., & Brandão, P. F. B. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, 186, 272–281. https://doi.org/10.1016/j.envpol.2013.12.009

Astorga, Y. (2007). Diagnóstico de la Microcuenca del Río Purires. https://fdocuments.es/document/diagnostico-micro-cuenca-rio-purires.html?page=1

Barrantes, K., Chacon, L., Solano, M., & Achí, R. (2013). Contaminación fecal del agua superficial de la microcuenca del río Purires, Costa Rica, 2010-2011. Revista de La Sociedad Venezolana de Microbiología, 33, 40–45.

Bundschuh, J., Armienta, M. A., Morales-Simfors, N., Alam, M. A., López, D. L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L. M., Altamirano Espinoza, M., Guimarães Guilherme, L. R., Sosa, N. N., Niazi, N. K., Tomaszewska, B., Lizama Allende, K., Bieger, K., … Ahmad, A. (2020). Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 51(16), 1–139. https://doi.org/10.1080/10643389.2020.1770527

Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., Liu, C. W., López, D., Armienta, M. A., Guilherme, L. R. G., Cuevas, A. G., Cornejo, L., Cumbal, L., & Toujaguez, R. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2-35. https://doi.org/10.1016/j.scitotenv.2011.06.024

Chacón, L., Arias, V., Barrantes, K., Beita-Sandí, W., Reyes, L., & Achí, R. (2018). Enterococci as a key parameter for water quality index: Purires River, Costa Rica. Journal of Water and Health, 16(6), 1007–1017. https://doi.org/10.2166/wh.2018.087

Cherrie, J. W. (2010). Assessing the effectiveness of control. In J. Cherrie, R. Howie & S. Semple (Eds.). Monitoring for Health Hazards at Work (4th ed. Pp:225-272). Wiley-Blackwell

Córdoba, J. (2012). Análisis de vulnerabilidad de las comunidades de Coris y Tablón, Provincia de Cartago, Costa Rica. Revista Ciencias Espaciales, 8(1), 231-259. https://www.lamjol.info/index.php/CE/article/view/2051/1846

Devleesschauwer, B., Havelaar, A. H., Maertens De Noordhout, C., Haagsma, J. A., Praet, N., Dorny, P., Duchateau, L., Torgerson, P. R., Van Oyen, H., & Speybroeck, N. (2014). DALY calculation in practice: A stepwise approach. International Journal of Public Health, 59(3), 571–574. https://doi.org/10.1007/s00038-014-0553-y

Dore, M. H. (2015). Global drinking water management and conservation: Optimal decision-making. Springer International Publishing. https://doi.org/10.1007/978-3-319-11032-5

Eaton, A., Clesceri, L.S., Franson, M. A. H., Rice, E. W., & Greanberg, A. E. (Eds.). (2005). Standard Methods of Examination Water and Wastewater (Vol 21). American Public Health Association.

Fernández-Macías, J. C., González-Mille, D. J., García-Arreola, M. E., Cruz-Santiago, O., Rivero-Pérez, N. E., Pérez-Vázquez, F., & Ilizaliturri-Hernández, C. A. (2020). Integrated probabilistic risk assessment in sites contaminated with arsenic and lead by long-term mining liabilities in San Luis Potosi, Mexico. Ecotoxicology and Environmental Safety, 197, 110568. https://doi.org/10.1016/j.ecoenv.2020.110568

Gentry, P. R., Clewell, H. J., Greene, T. B., Franzen, A. C., & Yager, J. W. (2014). The impact of recent advances in research on arsenic cancer risk assessment. Regulatory Toxicology and Pharmacology, 69(1), 91–104. https://doi.org/10.1016/j.yrtph.2014.02.006

Havelaar, A. H., & Melse, J. M. (2003). Quantifying public health risk in the WHO Guidelines for Drinking Water Quality. https://bit.ly/3zt74xg

Helsel, D. R. (2012). Statistics for censored environmental data using Minitab® and R (2nd ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118162729

Herrera-Murillo, J., Mora-Campos, D., Suarez-Serrano, A., Chaves-Villalobos, M., Salas-Jiménez, P., Gamboa-Jiménez, A., & Anchía-Leitón, D. (2019). Determinación de los niveles de arsénico presentes en sistemas de abastecimiento de agua de las regiones Chorotega y Huetar Norte de Costa Rica, América Central. Revista Geográfica de América Central, 4(61E), 101. https://doi.org/10.15359/rgac.61-4.5

Instituto Nacional de Estadística y Censos (INEC). (2015). VI Censo Nacional Agropecuario. https://bit.ly/3QybnNs

Instituto Nacional de Estadística y Censos (INEC). (2021). Estimaciones y proyecciones de población. https://bit.ly/3Ac97Gh

Khan, K. M., Chakraborty, R., Bundschuh, J., Bhattacharya, P., & Parvez, F. (2020). Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Science of the Total Environment, 710, 136071. https://doi.org/10.1016/j.scitotenv.2019.136071

Lamm, S. H., Boroje, I. J., Ferdosi, H., & Ahn, J. (2021). A review of low-dose arsenic risks and human cancers. Toxicology, 456, 152768. https://doi.org/10.1016/j.tox.2021.152768

Laskar, M., Gazi, E., Basu, B., Chowdhury, S., Ahmad, S., & Khan, M. (2015). Disability adjusted life years among arsenicosis patients in an arsenic-affected area of southern Bangladesh. Mediscope, 2(1), 4–12. https://doi.org/10.3329/mediscope.v2i1.24733

Leonarduzzi, E., Lunguni, I., & Colussi, C. (2020). Evaluación de poblaciones rurales expuestas a arsénico en el agua de consumo en la Provincia de Santa Fe, Argentina. Estrategias de comunicación y prevención de riesgos. Revista de Salud Ambiental, 20(2), 150–159.

Martínez-Acuña, M. I., Mercado-Reyes, M., Alegría-Torres, J. A., & Mejía-Saavedra, J. J. (2016). Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environmental Monitoring and Assessment, 188, 476. https://doi.org/10.1007/s10661-016-5453-6

McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., Lepori, E. V., Ahsan, H., & Parvez, F. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment, 429, 76–91. https://doi.org/10.1016/j.scitotenv.2011.08.051

Mendoza, O., Sánchez, R., Barrón, J., Cuevas, H., Escalante, P., & Solano, R. (2017). Riesgos potenciales de salud por consumo de agua con arsénico en Colima , México. Salud Pública De México, 59(1), 34-40

Montazar, A., Cahn, M., & Putman, A. (2019). Research advances in adopting drip irrigation for california organic spinach: Preliminary findings. Agriculture, 9(8), 1–14. https://doi.org/10.3390/agriculture9080177

Montero-Campos, V., Quesada-Kimsey, J., Ledezma-Espinoza, A., & Sandoval-Mora, J. A. (2010). Determinación de arsénico en abastecimientos de agua para consumo humano de la provincia de Cartago, Costa Rica. Acta Médica Costarricense, 52(2), 96-101. https://doi.org/10.51481/amc.v52i2.642

Morales, K. H., Ryan, L., Kuo, T. L., Wu, M. M., & Chen, C. J. (2000). Risk of internal cancers from arsenic in drinking water. Environmental Health Perspectives, 108(7), 655–661. https://doi.org/10.1289/ehp.00108655

Nasrabadi, T., Abbasi Maedeh, P., Sirdari, Z. Z., Shirani Bidabadi, N., Solgi, S., & Tajik, M. (2015). Analyzing the quantitative risk and hazard of different waterborne arsenic exposures: case study of Haraz River, Iran. Environmental Earth Sciences, 74(1), 521–532. https://doi.org/10.1007/s12665-015-4058-7

Navoni, J. A., De Pietri, D., Olmos, V., Gimenez, C., Bovi Mitre, G., de Titto, E., & Villaamil Lepori, E. C. (2014). Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina. Science of the Total Environment, 499, 166–174. https://doi.org/10.1016/j.scitotenv.2014.08.058

NCD Risk Factor Collaboration (NCD RisC). (2017). Country profile: Costa Rica. https://www.ncdrisc.org/country-profile.html

National Reasearch Council (NRC). (2001). Arsenic in Drinking Water: 2001 Update The National Academies Press. https://doi.org/10.17226/10194

Ogamba, E. N., Charles, E. E., & Izah, S. C. (2021). Distributions, pollution evaluation and health risk of selected heavy metal in surface water of Taylor creek, Bayelsa State, Nigeria. Toxicology and Environmental Health Sciences, 13(2), 109–121. https://doi.org/10.1007/s13530-020-00076-0

Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J. C., Arellano-Mendoza, M. G., Tamay-Cach, F., Valenzuela-Limón, O. L., García-Montalvo, E. A., & Hernández-Zavala, A. (2020). Arsenic exposure: A public health problem leading to several cancers. Regulatory Toxicology and Pharmacology, 110, 104539. https://doi.org/10.1016/j.yrtph.2019.104539

Quintanilla, B. (2017). Estadística en variables con censura: aplicación a datos medioambientales [Tesis de Maestria, Universitat Oberta de Catalunya]. https://bit.ly/3b6lTw2

Robson, M., & Toscano, W. (2007). Risk assessment for environmental health. John Wiley & Sons, Inc.

Salles, F. J., de Toledo, M. C. B., César, A. C. G., Ferreira, G. M., & Barbério, A. (2016). Cytotoxic and genotoxic assessment of surface water from São Paulo State, Brazil, during the rainy and dry seasons. Ecotoxicology, 25(4), 633–645. https://doi.org/10.1007/s10646-016-1622-1

Savarimuthu, X., Hira-Smith, M. M., Yuan, Y., von Ehrenstein, O. S., Das, S., Ghosh, N., Guha Mazumder, D. N., & Smith, A. H. (2006). Seasonal variation of arsenic concentrations in Tubewells in West Bengal, India. Journal of Health, Population and Nutrition, 24(3), 277–281. https://doi.org/10.3329/jhpn.v24i3.713

Sharma, S., Kaur, J., Nagpal, A. K., & Kaur, I. (2016). Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs. Environmental Monitoring and Assessment, 188(9), 506. https://doi.org/10.1007/s10661-016-5507-9

Smith, A. H., Ercumen, A., Yuan, Y., & Steinmaus, C. M. (2009). Increased lung cancer risks are similar whether arsenic is ingested or inhaled. Journal of Exposure Science and Environmental Epidemiology, 19(4), 343–348. https://doi.org/10.1038/jes.2008.73

Timm, C., Luther, S., Jurzik, L., Hamza, I. A., & Kistemann, T. (2016). Applying QMRA and DALY to assess health risks from river bathing. International Journal of Hygiene and Environmental Health, 219(7), 681-692. https://doi.org/10.1016/j.ijheh.2016.07.017

Tsuji, J. S., Chang, E. T., Gentry, P. R., Clewell, H. J., Boffetta, P., & Cohen, S. M. (2019). Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Critical Reviews in Toxicology, 49(1), 36-84. https://doi.org/10.1080/10408444.2019.1573804

Tsuji, J. S., Garry, M. R., Perez, V., & Chang, E. T. (2015). Low-level arsenic exposure and developmental neurotoxicity in children: A systematic review and risk assessment. Toxicology, 337, 91–107. https://doi.org/10.1016/j.tox.2015.09.002

Tsuji, J. S., Lennox, K. P., Watson, H. N., & Chang, E. T. (2021). Essential concepts for interpreting the dose-response of low-level arsenic exposure in epidemiological studies. Toxicology, 457, 152801. https://doi.org/10.1016/j.tox.2021.152801

United States Environmental Protection Agency (US EPA). (1988). Special report on ingested inorganic arsenic: skin cancer; nutritional essentiality (EPA/625/3-89/013). https://archive.epa.gov/raf/web/pdf/epa_625_3-87_013.pdf

United States Environmental Protection Agency (US EPA). (1989). Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). EPA/540/1-89/002. https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf

United States Environmental Protection Agency (US EPA). (2011). Exposure factors handbook 2011 Edition (Final Report). (EPA/600/R-090/052F). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252

Veas, N. (2011). Gestión del agua para consumo humano en la microcuenca del río Purires, [Tesis Maestria, Cetro Agonómico Tropical de Investigación y Enseñanza (CATIE)]. https://bit.ly/3v8jwQo

World Health Organization (WHO). (2006). Who Guidelines for the safe use wastewater, excreta and greyewater. Volumen I policy and regulatory aspects. https://www.who.int/publications/i/item/9241546824

World Health Organization (WHO). (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. https://bit.ly/2MUdxrb

Wilbers, G. J., Becker, M., Nga, L. T., Sebesvari, Z., & Renaud, F. G. (2014). Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Science of the Total Environment, 485-486(1), 653–665. https://doi.org/10.1016/j.scitotenv.2014.03.049

Zhang, H., Chang, S., Wang, L., & Wang, W. (2018). Estimating and comparing the cancer risks from THMs and low-level arsenic in drinking water based on disability-adjusted life years. Water Research, 145, 83-93. https://doi.org/10.1016/j.watres.2018.08.012

Zhang, H., Wang, L., Wang, Y., & Chang, S. (2020). Using disability-adjusted life years to estimate the cancer risks of low-level arsenic in drinking water. Journal of Environmental Science and Health, Part A, 55(1), 63–70. https://doi.org/10.1080/10934529.2019.1667167

Published

2022-09-06

How to Cite

Morales Mora, E., Barrantes Jiménez, K., Beita Sandí, W., & Chacón Jiménez, L. (2022). Risk assessment for arsenic, in low concentrations, for agricultural workers in Cartago, Costa Rica. UNED Research Journal, 14(2), e4070. https://doi.org/10.22458/urj.v14i2.4070

Issue

Section

Case study
Loading...