Culturable bacteria resistant to oxytetracycline during the vermicomposting of bovine excreta
DOI:
https://doi.org/10.22458/urj.v15i1.4586Keywords:
antimicrobials, tetracycline, bovine manure, lombricompost, lombricompost teaAbstract
Introduction: Bacteria with resistance genes to the antibiotic oxytetracycline have been detected in dairy cow manure worldwide, however, it is common a practice to use this manure as fertilizer. Vermicomposting can reduce the problem, but this subject has not been evaluated in Costa Rica. Objective: To analyze the presence of bacteria resistant to oxytetracycline during vermicomposting in a Costa Rican dairy farm. Methods: We inoculated broths supplemented with oxytetracycline from fresh manure, precomposted manure, vermicompost and "compost teas" with and without molasses. We prepared “compost teas” with and without molasses from this sample. We extracted DNA from these liquid cultures and mass-sequenced the 16S ribosomal amplicon. Results: We classified 105 292 sequences in 58 amplicon sequence variants from broths supplemented with oxytetracycline, most of them identified as Proteobacteria, Bacteroidetes and Firmicutes. Fresh manure had the most resistant bacteria (32), followed by the “teas” without and with molasses. Precomposting and vermicomposting decreased the number and type of resistant bacteria. However, preparation of the teas caused the multiplication of bacterial genera recognized for their ability to accumulate resistance determinants. Conclusion: Precomposting and vermicomposting decreased the number and type of resistant bacteria.
References
Adewoyin, M. A., & Okoh, A. I. (2018). The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species. Reviews on Environmental Health, 33(3), 265-272. https://doi.org/10.1515/reveh-2017-0034
Aira, M., Olcina, J., Pérez-Losada, M., & Domínguez, J. (2016). Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates. Applied Soil Ecology, 98, 103-111. https://doi.org/10.1016/j.apsoil.2015.10.002
Arancon, N. Q., Edwards, C. A., Dick, R., & Dick, L. (2007). Vermicompost tea production and plant growth impacts. Biocycle 48, 51-52. https://bit.ly/3IaYcjR
Arancon, N. Q., Owens, J. D., & Converse, C. (2019). The effects of vermicompost tea on the growth and yield of lettuce and tomato in a non-circulating hydroponics system. Journal of plant nutrition, 42(19), 2447-2458. https://doi.org/10.1080/01904167.2019.1655049
Araya, M., Davidovich, G., Chaves, C., & Arias, M. L. (2005). Identificación de Enterococcus sp. en muestras de leche cruda del Área Metropolitana de Costa Rica y evaluación del patrón de sensibilidad a antibióticos. Archivos latinoamericanos de nutrición, 55(2), 161-166.
Artavia, S., Uribe, L., Saborío, F., Arauz, L. F., & Castro, L. (2010). Efecto de la aplicación de abonos orgánicos en la supresión de Pythium myriotylum en plantas de tiquisque (Xanthosoma sagittifolium). Agronomía Costarricense, 34(1), 17-29.
Aust, M. O., Godlinski, F., Travis, G. R., Hao, X., McAllister, T. A., Leinweber, P., & Thiele-Bruhn, S. (2008). Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental pollution, 156(3), 1243-1251. https://doi.org/ 10.1016/j.envpol.2008.03.011
Black, Z., Balta, I., Black, L., Naughton, P. J., Dooley, J. S., & Corcionivoschi, N. (2021). The fate of foodborne pathogens in manure treated soil. Frontiers in Microbiology, 12, 781357. https://doi.org/10.3389/fmicb.2021.781357
Blomström, A. L., Lalander, C., Komakech, A. J., Vinnerås, B., & Boqvist, S. (2016). A metagenomic analysis displays the diverse microbial community of a vermicomposting system in Uganda. Infection ecology & epidemiology, 6(1), 32453. https://doi.org/10.3402/iee.v6.32453
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A.,Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., … & Caporaso J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
Calderón, J. (1992) Determinación de residuos de sustancias inhibitorias en leche bovina no pausterizada. [Tesis de Licenciatura, Universidad Nacional de Costa Rica].
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME journal, 11(12), 2639-2643. https://doi.org/10.1038/ismej.2017.119
Carmona, G., & Vindas, S. (2008). Uso racional de medicamentos veterinarios en ganado bovino. https://images.engormix.com/s_articles/carmonasolano_medicamentos.pdf
Casey, J. A., Curriero, F. C., Cosgrove, S. E., Nachman, K. E., & Schwartz, B. S. (2013). High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA internal medicine, 173(21), 1980-1990. https://doi.org/10.1001/jamainternmed.2013.10408
Carrel, M., Schweizer, M. L., Sarrazin, M. V., Smith, T. C., & Perencevich, E. N. (2014). Residential proximity to large numbers of swine in feeding operations is associated with increased risk of methicillin-resistant Staphylococcus aureus colonization at time of hospital admission in rural Iowa veterans. Infection Control & Hospital Epidemiology, 35(2), 190-192. https://doi.org/10.1086/674860
Chun, J., Kim, K. Y., Lee, J. H., & Choi, Y. (2010). The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC microbiology, 10(1), 1-8. https://doi.org/10.1186/1471-2180-10-101
Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: User Manual/Tutorial. https://bit.ly/44BoeWU
CLSI (2017). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Seven Informational Supplement. M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute.
Cui, G., Li, F., Li, S., Bhat, S. A., Ishiguro, Y., Wei, Y., Yamada, T., Fu, X, & Huang, K. (2018). Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Science of the total environment, 644, 494-502. https://doi.org/10.1016/j.scitotenv.2018.07.015
Domínguez, J., Aira, M., Crandall, K. A., & Pérez-Losada, M. (2021). Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge. Scientific Reports, 11(1), 15556. https://doi.org/10.1038/s41598-021-95099-z
Duffy, B., Sarreal, C., Ravva, S., & Stanker, L. (2004). Effect of molasses on regrowth of E. coli O157: H7 and Salmonella in compost teas. Compost science & utilization, 12(1), 93-96. https://doi.org/ 10.1080/1065657X.2004.10702163
Eastman, B. R., Kane, P. N., Edwards, C. A., Trytek, L., Gunadi, B., Stermer, A. L., & Mobley, J. R. (2001). The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Science & Utilization, 9(1), 38-49. https://doi.org/10.1080/1065657X.2001.10702015
Economou, V., & Gousia, P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and drug resistance, 8, 49-62. https://doi.org/10.2147/IDR.S55778
Fritz, J. I., Franke-Whittle, I. H., Haindl, S., Insam, H., & Braun, R. (2012). Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals. Canadian journal of microbiology, 58(7), 836-847. https://doi.org/10.1139/w2012-061
Furlong, M. A., Singleton, D. R., Coleman, D. C., & Whitman, W. B. (2002). Molecular and Culture-Based Analyses of Prokaryotic Communities from an Agricultural Soil and the Burrows and Casts of the Earthworm Lumbricus rubellus. Applied and Environmental Microbiology, 68(3), 1265-1279. https://doi.org/10.1128/AEM.68.3.1265-1279.2002
Giacomini, D. G. (2012). Formal recommendation by the National organic Standard Board (NOSB) to the National Organic Program (NOP). US Department of Agriculture.
Girija, D., Deepa, K., Xavier, F., Antony, I., & Shidhi, P. R. (2013). Analysis of cow dung microbiota—a metagenomic approach. Indian Journal of Biotechnology, 12, 372-378. https://bit.ly/44AC7of
Grilo, M. L., Sousa-Santos, C., Robalo, J., & Oliveira, M. (2020). The potential of Aeromonas spp. from wildlife as antimicrobial resistance indicators in aquatic environments. Ecological Indicators, 115, 106396. https://doi.org/10.1016/j.ecolind.2020.106396
Gupta, K. K., Aneja, K. R., & Rana, D. (2016). Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing, 3, 1-11. https://doi.org/10.1186/s40643-016-0105-9
Gutiérrez, K., Alfaro, M., Granados, F., Sánchez, J., García, F., & Rodríguez, C. (2010). Detección de tetraciclinas en nueve lotes de alimentos para cerdos, tilapias y pollos producidos en Costa Rica: incumplimiento de normativas y disconformidades con el etiquetado oficial de garantía. Agronomía Costarricense, 34(2), 145-151
Hu, S. H., Yuan, S. X., Qu, H., Jiang, T., Zhou, Y. J., Wang, M. X., & Ming, D. S. (2016). Antibiotic resistance mechanisms of Myroides sp. Journal of Zhejiang University-Science B, 17(3), 188-199. https://doi.org/ 10.1631/jzus.B1500068
Hu, J., Zhao, H., Wang, Y., Yin, Z., & Kang, Y. (2020). The bacterial community structures in response to the gut passage of earthworm (Eisenia fetida) feeding on cow dung and domestic sludge: Illumina high-throughput sequencing-based data analysis. Ecotoxicology and Environmental Safety, 190, 110149. https://doi.org/10.1016/j.ecoenv.2019.110149
Huang, K., Xia, H., Wu, Y., Chen, J., Cui, G., Li, F., Chen, Y., & Wu, N. (2018). Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresource technology, 259, 32-39. https://doi.org/10.1016/j.biortech.2018.03.021
Huijsdens, X. W., Van Dijke, B. J., Spalburg, E., van Santen-Verheuvel, M. G., Heck, M. E., Pluister, G. N., Voss, A., Wannet, W., & De Neeling, A. J. (2006). Community-acquired MRSA and pig-farming. Annals of clinical microbiology and antimicrobials, 5, 1-4. https://doi.org/10.1186/1476-0711-5-26
Janda, J. M., & Abbott, S. L., (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23(1), 35-73. https://doi.org/10.1128/CMR.00039-09
Kiyasudeen, K., Ibrahim, M. H., Quaik, S., Ismail, S. A. (2016). Vermicompost, its applications and derivatives. In K. Kiyasudeen, M. Ibrahim, S. Quaik, S. Ismail (Eds.), Prospects of Organic Waste Management and the Significance of Earthworms (pp. 201-230). Springer.
Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms, 7(6), 180. https://doi.org/10.3390/microorganisms7060180
Kumar, K., Gupta, S. C., Chander, Y., & Singh, A. K. (2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in Agronomy, 87, 1-53. https://doi.org/10.1016/S0065-2113(05)87001-4
Kobashi, Y., Hasebe, A., Nishio, M., & Uchiyama, H. (2007). Diversity of tetracycline resistance genes in bacteria isolated from various agricultural environments. Microbes and environments, 22(1), 44-51.
Kyselková, M., Jirout, J., Vrchotová, N., Schmitt, H., & Elhottová, D. (2015). Spread of tetracycline resistance genes at a conventional dairy farm. Frontiers in microbiology, 6, 536. https://doi.org/10.3389/fmicb.2015.00536
Li, Z., Chen, C., Zhang, K., Zhang, Z., Zhao, R., Han, B., Yang, F., & Ding, Y. (2022). Response of Antibiotic Resistance Genes and Related Microorganisms to Arsenic during Vermicomposting of Cow Dung. International Journal of Environmental Research and Public Health, 19(21), 14475. https://doi.org/10.3390/ijerph192114475
Liu, D., Lian, B., Wang, B., & Jiang, G. (2011). Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral. PLoS One, 6(12), e28803. https://doi.org/10.1371/journal.pone.0028803
Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Makaka, G., Simon, M., & Okoh, A. I. (2016). An overview of the control of bacterial pathogens in cattle manure. International journal of environmental research and public health, 13(9), 843. https://doi.org/10.3390/ijerph13090843
Mupondi, L. T., Mnkeni, P. N., & Muchaonyerwa, P. (2011). Effects of a precomposting step on the vermicomposting of dairy manure-waste paper mixtures. Waste Management & Research, 29(2), 219-228. https://doi.org/10.1177/0734242X10363142
Nogrado, K., Unno, T., Hur, H. G., & Lee, J. H. (2021). Tetracycline-resistant bacteria and ribosomal protection protein genes in soils from selected agricultural fields and livestock farms. Applied Biological Chemistry, 64(1), 1-9. https://doi.org/10.1186/s13765-021-00613-6
Organización de las Naciones Unidad para la Alimentación y la Agricultura (FAO). (2021). El Plan de acción de la FAO sobre la resistencia a los antimicrobianos 2021-2025. https://doi.org/10.4060/cb5545es
Oliver, J. P., Gooch, C. A., Lansing, S., Schueler, J., Hurst, J. J., Sassoubre, L., Crossette, E. M., & Aga, D. S. (2020). Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. Journal of dairy science, 103(2), 1051-1071. https://doi.org/10.3168/jds.2019-16778
Pandey, P., Chiu, C., Miao, M., Wang, Y., Settles, M., Silva del Rio, N., Castillo, A., Souza, A., Pereira, R., & Jeannotte, R. (2018). 16S rRNA analysis of diversity of manure microbial community in dairy farm environment. PloS one, 13(1), e0190126. https://doi.org/10.1371/journal.pone.0190126
Pane, C., Celano, G., & Zaccardelli, M. (2014). Metabolic patterns of bacterial communities in aerobic compost teas associated with potential biocontrol of soilborne plant diseases. Phytopathologia Mediterranea, 53(2), 277-286. https://doi.org/10.14601 / Phytopathol_Mediterr-13363
Pant, A. P., Radovich, T. J., Hue, N. V., & Paull, R. E. (2012). Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Scientia horticulturae, 148, 138-146. https://doi.org/10.1016/j.scienta.2012.09.019
Pathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1, 1-19. https://doi.org/10.1186/2193-1801-1-26
Pérez-Pérez, J. A., Espinosa-Victoria, D., Silva-Rojas, H. V., & López-Reyes, L. (2018.) Diversidad de la microbiota bacteriana cultivable del tracto digestivo de Eisenia fetida. Revista fitotecnia mexicana, 41(3), 255-264. https://doi.org/10.35196/rfm.2018.3.255-264
Popowska, M., Rzeczycka, M., Miernik, A., Krawczyk-Balska, A., Walsh, F., & Duffy, B. (2012). Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrobial agents and chemotherapy, 56(3), 1434-1443. https://doi.org/ 10.1128/AAC.05766-11
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219
Romero-Tepal, E. M., Contreras-Blancas, E., Navarro-Noya, Y. E., Ruíz-Valdiviezo, V. M., Luna-Guido, M., Gutiérrez-Miceli, F. A., & Dendooven, L. (2014). Changes in the bacterial community structure in stored wormbed leachate. Microbial Physiology, 24(2), 105-113 https://doi.org/ 10.1159/000357915
Sandegren, L. (2014). Selection of antibiotic resistance at very low antibiotic concentrations. Upsala journal of medical sciences, 119(2), 103-107. https://doi.org/ 10.3109/03009734.2014.904457
Scheuerell, S., & Mahaffee, W. (2002). Compost tea: principles and prospects for plant disease control. Compost Science & Utilization, 10(4), 313-338.
Scheuerell, S. J., & Mahaffee, W. F. (2004). Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology, 94(11), 1156-1163.
Silbergeld, E. K., Graham, J., & Price, L. B. (2008). Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health, 29, 151-169. https://doi.org/10.1146/annurev.publhealth.29.020907.090904
Tortós, C. L., Correa, M. T., & Guerra, H. C. (2006). Estudio sobre el manejo de antibióticos en hatos lecheros artesanales de Costa Rica. Ciencias Veterinarias, 24(1), 91-106.
Toyota, K., & Kimura, M. (2000). Microbial community indigenous to the earthworm Eisenia foetida. Biology and fertility of soils, 31(3), 187-190.
Uribe, L., Arauz, L. F., Mata, M., Meneses, G., & Castro, L. (2009). Efecto del vermicompostaje sobre las poblaciones de Colletotrichum acutatum y Pectobacterium carotovorum presentes en residuos de plantas. Agronomía Costarricense, 33(1), 91-101. https://www.redalyc.org/pdf/436/43612054008.pdf
Vindas, M. J. (2019). Espectro de resistencia, estructura genética y relaciones evolutivas de plásmidos conjugativos con resistencia a tetraciclinas aislados de ecosistemas agropecuarios costarricenses. [Tesis Maestría Académica en Microbiología]. Universidad de Costa Rica.
Virto, M., Santamarina-García, G., Amores, G., & Hernández, I. (2022). Antibiotics in Dairy Production: Where Is the Problem? Dairy, 3(3), 541-564. https://doi.org/10.3390/dairy3030039
Wang, Y., Yin, Z., Zhao, H., Hu, J., & Kang, Y. (2019). The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge. Environmental Science and Pollution Research, 26, 34412-34420. https://doi.org/10.1007/s11356-019-06495-y
Wong, K., Shaw, T. I., Oladeinde, A., Glenn, T. C., Oakley, B., & Molina, M. (2016). Rapid microbiome changes in freshly deposited cow feces under field conditions. Frontiers in microbiology, 7, 500. https://doi.org/10.3389/fmicb.2016.00500
Wüst, P. K., Horn, M. A., & Drake, H. L. (2011). Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. The ISME journal, 5(1), 92-106. https://doi.org/10.1038/ismej.2010.99
Yatoo, A. M., Ali, M., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41(1), 1-26. https://doi.org/10.1007/s13593-020-00657-w
Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International journal of systematic and evolutionary microbiology, 67(5), 1613. https://doi.org/10.1099/ijsem.0.001755
Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656
Zamora, K., Castro, L., Wang, A., Arauz, L. F., & Uribe, L. (2017). Uso potencial de lixiviados y tés de vermicompost en el control del ojo de gallo del cafeto Mycena citricolor. Agronomía Costarricense, 41(1), 33-51.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UNED Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.