Morphometry and burst swimming in six continental fish species from Costa Rica
DOI:
https://doi.org/10.22458/urj.v11i3.2701Keywords:
velocity, morphometric, characteristics, locomotion, ecology, riverine, ecosystems, freshwaterAbstract
Introduction: Current research of fish locomotion is focused on creating better underwater vehicles and how environmental stress factors modify swimming. Objective: To study the relation of morphometric characteristics with burst swimming in six representative species of continental fishes from Costa Rica. Methods: We measured total length, standard length, height and area of the tail of 38 individuals from six species. We used a Kruskall-Wallis test and a Boxplot graphic to compare species; and a PCA test to identify body variables that influence swimming. A Non-Metric Dimensional Scaling (NMDS) test was done for species and position in the water column. Results: The fastest swimming corresponded to A. nigrofasciata (9,29cm/s), while S. salvini (1,65cm/s) was the slowest. Burst swimming speed is influenced by body size and tail type, and differed with position in the water column, being surface species the fastest. Conclusions: Morphological and ecological characteristics determine differences in burst swim.
References
Altringham, J. D., & Ellerby, D. J. (1999). Fish swimming: patterns in muscle function. Journal of Experimental Biology, 202(23), 3397-3403.
Arias, I. G., & Alvarado, J. C. C. (2013). Planning and development of Costa Rica water resources: current status and perspectives. Tecnología en Marcha, 26(4), 52-63. DOI: 10.18845/tm.v26i4.1583
Barboza, J. P., & Villalobos, G. U. (2018). Fish assemblages and their ecological traits along an elevational gradient in the Río Pacuare, Costa Rica. Revista de Biología Tropical, 66(1), S132-S152. DOI: 10.15517/rbt.v66i1.33269
Barbee, N. C. (2005). Grazing insects reduce algal biomass in a neotropical stream. Hydrobiologia, 532(1-3), 153-165. DOI: 10.1007/s10750-004-9527-z
Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., & Gairaud, C. G. (2015). Sedimentological implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpe National Wetlands, Costa Rica. Revista de Biología Tropical, 63(3), 591-601. DOI: 10.15517/rbt.v63i3.16173
Binning, S. A., Roche, D. G., & Layton, C. (2013). Ectoparasites increase swimming costs in a coral reef fish. Biology Letters, 9(1), 20120927. DOI: 10.1098/rsbl.2012.0927
Blake, R. W. (1983). Median and paired fin propulsion. Fish Biomechanics, 1983, 214-247.
Blake, R. W. (2004). Fish functional design and swimming performance. Journal of fish biology, 65(5), 1193-1222. DOI: 10.1111/j.0022-1112.2004.00568.x
Bussing, W. A. (2002). Peces de las aguas continentales de Costa Rica. San José, Costa Rica: Editorial de la Universidad de Costa Rica.
Campos, L. D. A. (2017). Do hydroelectric projects affect aquatic plants? The case of Marathrum foeniculaceum (Podostemaceae) in two rivers, Southeastern Costa Rica. UNED Research Journal, 9(2), 305-312.
Chapman, L., Kramer, D. & Chapman, C. (1991). Population dynamics of the fish Poecilia gillii (Poecillidae) in pools of an intermittent tropical stream. Journal of Animals Ecology, 60, 441-453. DOI: 10.2307/5289
Djumanto, D., Ustadi, U., Rustadi, R., & Triyatmo, B. (2018). Utilization of Wastewater from Vannamei Shrimp Pond for Rearing Milkfish in Keburuhan Coast Purworejo Sub-District. Aquacultura Indonesiana, 19(1), 38-46. DOI: 10.21534/ai.v19i1.48
Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F., & McKenzie, D. J. (2013). The effect of hypoxia on fish swimming performance and behaviour. In Swimming physiology of fish. Berlin, Germany: Springer. DOI: 10.1007/978-3-642-31049-2_6
Eschmeyer, W. N. (Ed). (2018). Catalog of Fishes. California Academy of Sciences. Retrieved from http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. 24/3/2014
Farah, A. P. (2016). Fragmentación del hábitat por represas hidroeléctricas para la ictiofauna dulceacuícola en Costa Rica (tesis de licenciatura). San José, Costa Rica: Universidad de Costa Rica.
Faria, A. M., & Gonçalves, E. J. (2010). Ontogeny of swimming behaviour of two temperate clingfishes, Lepadogaster and L. purpurea (Gobiesocidae). Marine Ecology Progress Series, 414, 237-248. DOI: 10.3354/meps08692
Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Biosciences, 52(6), 483–498. DOI: 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2
Ferry, L. A., Paig-Tran, E. M., & Gibb, A. C. (2015). Suction, ram, and biting: deviations and limitations to the capture of aquatic prey. Integrative and Comparative Biology, 55(1), 97-109. DOI: 10.1093/icb/icv028
Flammang, B. E., Tangorra, J. L., Mignano, A. P., & Lauder, G. V. (2017). Building a Fish: The Biology and Engineering Behind a Bioinspired Autonomous Underwater Vehicle. Marine Technology Society Journal, 51(5), 15-22. DOI: 10.4031/MTSJ.51.5.1
Gibson, R. J., Haedrich, R. L., & Wernerheim, C. M. (2005). Loss of fish habitat as a consequence of inappropriately constructed stream crossings. Fisheries, 30(1), 10-17. DOI: 10.1577/1548-8446(2005)30[10:LOFHAA]2.0.CO;2
Holden, M. J., & Raitt, D. F. S. (1974). Manual of fisheries science. Part 2-Methods of resource investigation and their application. Denmark: FAO/DANIDA.
Johansen, J. L., & Jones, G. P. (2011). Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Global Change Biology, 17(9), 2971-2979. DOI: 10.1111/j.1365-2486.2011.02436.x
Katopodis, C. (2005). Developing a toolkit for fish passage, ecological flow management and fish habitat works. Journal of Hydraulic Research, 43(5), 451-467. DOI: 10.1080/00221680509500144
Kipanyula, M. J., Maina, K. W., & Maulilio Kipanyula, C. J. (2016). Morphological and adaptational changes associated with fish migration from fresh to marine water bodies. International Journal of Fisheries and Aquatic Studies, 4, 125-129.
Langerhans, R. B., Layman, C. A., Shokrollahi, A. M., & DeWitt, T. J. (2004). Predator‐driven phenotypic diversification in Gambusia affinis. Evolution, 58(10), 2305-2318. DOI: 10.1111/j.0014-3820.2004.tb01605.x
Langerhans, R. B., & Reznick, D. N. (2010). Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. Fish Locomotion: an eco-ethological perspective, 220, 248. DOI: 10.1201/b10190-8
Lauder, G. V. (2000). Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. American Zoologist, 40(1), 101-122. DOI: 10.1093/icb/40.1.101
Lauder, G. V., Drucker, E. G., Nauen, J. C., & Wilga, C. D. (2003). Experimental hydrodynamics and evolution: caudal fin locomotion in fishes. In V. L. Bels, J. P. Gasc & A. Casinos (Eds), Vertebrate Biomechanics and Evolution (pp. 117-135). Oxford, England: BIOS Scientific Publishers Ltd.
Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487), 1973-1993.
Lupandin, A. I. (2005). Effect of flow turbulence on swimming speed of fish. Biology Bulletin, 32(5), 461-466. DOI: 10.1007/s10525-005-0125-z
McManamay, R. A., Peoples, B. K., Orth, D. J., Dolloff, C. A., & Matthews, D. C. (2015). Isolating causal pathways between flow and fish in the regulated river hierarchy. Canadian journal of fisheries and aquatic sciences, 72(11), 1731-1748.
Maddock, L., Bone, Q., & Rayner, J. M. (Eds.). (1994). The Mechanics and Physiology of Animal Swimming. Cambridge, U.K.: Cambridge University Press. DOI: 10.1017/CBO9780511983641
Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2015). Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology, 69(2), 219-226. DOI: 10.1007/s00265-014-1834-4
Mims, M. C., & Olden, J. D. (2012). Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 93(1), 35-45. DOI: 10.1890/11-0370.1
Mueller, M., Pander, J., & Geist, J. (2011). The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology, 48(6), 1450-1461. DOI: 10.1111/j.1365-2664.2011.02035.x
Nelson, J. A., & Claireaux, G. (2005). Sprint swimming performance of juvenile European sea bass. Transactions of the American Fisheries Society, 134(5), 1274-1284.
Nowroozi, B. N., & Brainerd, E. L. (2014). Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes. Zoology, 117(1), 28-35. DOI: 10.1016/j.zool.2013.10.003
Pease, A. A., Gonzalez-Diaz, A. A., Rodiles-Hernandez, R., & Winemiller, K. O. (2012). Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57(5), 1060-1075. DOI: 10.1111/j.1365-2427.2012.02768.x
Perkin, J. S., Gido, K. B., Cooper, A. R., Turner, T. F., Osborne, M. J., Johnson, E. R., & Mayes, K. B. (2015). Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 85(1), 73-92. DOI: 10.1890/14-0121.1
Picado, J. N., Parallada, M. S., Mora, A. M., & Sánchez, A. F. (2017). Selección de hábitat de Lontra longicaudis (Carnivora, Mustelidae) bajo la influencia de la represa hidroeléctrica del río Peñas Blancas y sus tributarios, Alajuela, Costa Rica. Uniciencia, 31(1), 73-84. DOI: 10.15359/ru.31-1.8
Pichler, C., & Schiemer, F. (2008). Ecology of fishes of Quebrada Negra, Costa Rica, a first order neotropical lowland stream. Ecología de los peces de Quebrada Negra, Costa Rica, río neotropical de primer orden de tierras bajas. Stapfia, 88, 495-505.
Plaut, I. (2001). Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(1), 41-50. DOI: 10.1016/S1095-6433(01)00462-7
Robolledo, M., Landaeta, M. & Muñoz, G. (2014). Efecto del endoparásito Prosorhynchoides sp. (Trematoda: Bucephalidae) en la capacidad de nado sostenido del baunco Girella laevifrons (Osteichthyes: Kyphosidae). Revista de Biología Marina y Oceanografía, 49(3), 625-630.
Reidy, S. P., Kerr, S. R., & Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. Journal of Experimental Biology, 203(2), 347-357.
Sfakiotakis, M., Lane, D. M., & Davies, J. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237-252. DOI: 10.1109/48.757275
Shang, L., Wang, S., Tan, M., & Cheng, L. (2012). Swimming locomotion modeling for biomimetic underwater vehicle with two undulating long-fins. Robotica, 30(6), 913-923. DOI: 10.1017/S0263574711001159
Sibaja, A. A., Bussing, W., Garita-Alvarado, C., & López, M. (2013). Annotated checklist of the freshwater fishes of continental and insular Costa Rica: additions and nomenclatural revisions. Check List, 9, 987. DOI: 10.15560/9.5.987
Tabash, F. B. & Guadamuz, S. (2000). A management plan for the sport fishery of Parachromis dovii (Pisces: Cichlidae) (Gunther 1864) in Hule lake, Costa Rica. Revista de Biologia Tropical, 48(2-3), 473-485.
Trujillo-Jiménez, P. (1998). Trophic spectrum of the cichlids Cichlasoma (Parapetenia) istlanum and Cichlasoma (Arconcentrus) nigrofasciatum in the Amacuzac River, Morelos, Mexico. Journal of Freshwater Ecology, 13(4), 465-473. DOI: 10.1080/02705060.1998.9663643
Videler, J. J. (1993). Fish Swimming. London, U.K.: Chapman & Hall. DOI: 10.1007/978-94-011-1580-3
Wardle, C., & He, P. (1988). Burst swimming speeds of mackerel, Scomber scombrus. Journal of Fish Biolology, 32, 471-478. DOI: 10.1111/j.1095-8649.1988.tb05382.x
Weihs, D. (1973). Energetic Advantages of Burst Swimming of Fish. Journal of Theoretical Biology, 48(1), 215-229. DOI: 10.1016/0022-5193(74)90192-1
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, G., Darwall, W., Lujan, N. K., Harrison, I., Stiassny, M. L. J., Silvano, R. A. M., Fitzgerald, D. B., Pelicice, F. M., Agostinho, A. A., Gomes, L. C., Albert, J. S., Baran, E., Petrere Jr., M., Zarfl, C., Mulligan, M., Sullivan, J. P., Arantes, C. C., Sousa, L. M., Koning, A. A., Hoeinghaus, D. J., Sabaj, M., Lundberg, J. G., Armbruster, J., Thieme, M. L., Petry, P., Zuanon, J., Torrente, G. V., Snoeks, J., Rainboth, C. W., Pavanelli, C. S., Akama, A., van Soesbergen, A., & Sáenz, L. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351(6269), 128-129. DOI: 10.1126/science.aac7082
Wisenden, B. D. (1994). Factors affecting reproductive success in free-ranging convict cichlids (Cichlasoma nigrofasciatum). Canadian Journal of Zoology, 72(12), 2177-2185. DOI: 10.1139/z94-291
Downloads
Published
How to Cite
Issue
Section
License
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.