Morfometría y nado explosivo es seis especies de peces continentales de Costa Rica
PDF (English)
HTML (English)
EPUB

Palabras clave

nado
explosivo
características
morfoméetricas
ecología
ecosistemas
riparios
Costa Rica

Cómo citar

Quesada-Alvarado, F., & Campos-Calderón, F. (2019). Morfometría y nado explosivo es seis especies de peces continentales de Costa Rica. UNED Research Journal, 11(3), 395-402. https://doi.org/10.22458/urj.v11i3.2701

Resumen

ntroducción: La investigación actual sobre del nado de los peces se centra en crear vehículos autónomos submarinos y cómo factores ambientales de estrés modifican la natación. Objetivo: Estudiar la relación de las características morfométricas con el nado explosivo para seis especies representativas de peces continentales de Costa Rica. Metodología: Medimos la longitud total, la longitud estándar, la altura y el área de la cola de 38 individuos de seis especies. Usamos la prueba de Kruskall-Wallis y un gráfico de diagrama de cajas para comparar las especies; , y un análisis de componentes principales (PCA) para identificar las variables corporales que influyen en el nado. Una prueba de escalamiento no dimensional métrico (NMDS) para mostrar la relación entre las especies y la posición ecológica en la columna de agua. Resultados: El nado más rápido se encontró en A. nigrofasciata (9,29cm/s), mientras que S. salvini (1,65cm/s) fue la especie más lenta del estudio. La velocidad de la ráfaga de natación está influenciada por el tamaño del cuerpo y el tipo de cola, y difiere por la posición en la columna de agua, siendo las especies en la superficie las más rápidas. Conclusiones: Las características morfológicas como las ecológicas determinarán las diferencias en la velocidad de nado explosivo.
https://doi.org/10.22458/urj.v11i3.2701
PDF (English)
HTML (English)
EPUB

Citas

Afshan, S., Ali, S., Ameen, U. S., Farid, M., Bharwana, S. A., Hannan, F., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences, 2(1), 74-79.

Altringham, J. D., & Ellerby, D. J. (1999). Fish swimming: patterns in muscle function. Journal of Experimental Biology, 202(23), 3397-3403.

Arias, I. G., & Alvarado, J. C. C. (2013). Planning and development of Costa Rica water resources: current status and perspectives. Tecnología en Marcha, 26(4), 52-63. DOI: 10.18845/tm.v26i4.1583

Barboza, J. P., & Villalobos, G. U. (2018). Fish assemblages and their ecological traits along an elevational gradient in the Río Pacuare, Costa Rica. Revista de Biología Tropical, 66(1), S132-S152. DOI: 10.15517/rbt.v66i1.33269

Barbee, N. C. (2005). Grazing insects reduce algal biomass in a neotropical stream. Hydrobiologia, 532(1-3), 153-165. DOI: 10.1007/s10750-004-9527-z

Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., & Gairaud, C. G. (2015). Sedimentological implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpe National Wetlands, Costa Rica. Revista de Biología Tropical, 63(3), 591-601. DOI: 10.15517/rbt.v63i3.16173

Binning, S. A., Roche, D. G., & Layton, C. (2013). Ectoparasites increase swimming costs in a coral reef fish. Biology Letters, 9(1), 20120927. DOI: 10.1098/rsbl.2012.0927

Blake, R. W. (1983). Median and paired fin propulsion. Fish Biomechanics, 1983, 214-247.

Blake, R. W. (2004). Fish functional design and swimming performance. Journal of fish biology, 65(5), 1193-1222. DOI: 10.1111/j.0022-1112.2004.00568.x

Bussing, W. A. (2002). Peces de las aguas continentales de Costa Rica. San José, Costa Rica: Editorial de la Universidad de Costa Rica.

Campos, L. D. A. (2017). Do hydroelectric projects affect aquatic plants? The case of Marathrum foeniculaceum (Podostemaceae) in two rivers, Southeastern Costa Rica. UNED Research Journal, 9(2), 305-312.

Chapman, L., Kramer, D. & Chapman, C. (1991). Population dynamics of the fish Poecilia gillii (Poecillidae) in pools of an intermittent tropical stream. Journal of Animals Ecology, 60, 441-453. DOI: 10.2307/5289

Djumanto, D., Ustadi, U., Rustadi, R., & Triyatmo, B. (2018). Utilization of Wastewater from Vannamei Shrimp Pond for Rearing Milkfish in Keburuhan Coast Purworejo Sub-District. Aquacultura Indonesiana, 19(1), 38-46. DOI: 10.21534/ai.v19i1.48

Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F., & McKenzie, D. J. (2013). The effect of hypoxia on fish swimming performance and behaviour. In Swimming physiology of fish. Berlin, Germany: Springer. DOI: 10.1007/978-3-642-31049-2_6

Eschmeyer, W. N. (Ed). (2018). Catalog of Fishes. California Academy of Sciences. Retrieved from http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. 24/3/2014

Farah, A. P. (2016). Fragmentación del hábitat por represas hidroeléctricas para la ictiofauna dulceacuícola en Costa Rica (tesis de licenciatura). San José, Costa Rica: Universidad de Costa Rica.

Faria, A. M., & Gonçalves, E. J. (2010). Ontogeny of swimming behaviour of two temperate clingfishes, Lepadogaster and L. purpurea (Gobiesocidae). Marine Ecology Progress Series, 414, 237-248. DOI: 10.3354/meps08692

Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Biosciences, 52(6), 483–498. DOI: 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2

Ferry, L. A., Paig-Tran, E. M., & Gibb, A. C. (2015). Suction, ram, and biting: deviations and limitations to the capture of aquatic prey. Integrative and Comparative Biology, 55(1), 97-109. DOI: 10.1093/icb/icv028

Flammang, B. E., Tangorra, J. L., Mignano, A. P., & Lauder, G. V. (2017). Building a Fish: The Biology and Engineering Behind a Bioinspired Autonomous Underwater Vehicle. Marine Technology Society Journal, 51(5), 15-22. DOI: 10.4031/MTSJ.51.5.1

Gibson, R. J., Haedrich, R. L., & Wernerheim, C. M. (2005). Loss of fish habitat as a consequence of inappropriately constructed stream crossings. Fisheries, 30(1), 10-17. DOI: 10.1577/1548-8446(2005)30[10:LOFHAA]2.0.CO;2

Holden, M. J., & Raitt, D. F. S. (1974). Manual of fisheries science. Part 2-Methods of resource investigation and their application. Denmark: FAO/DANIDA.

Johansen, J. L., & Jones, G. P. (2011). Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Global Change Biology, 17(9), 2971-2979. DOI: 10.1111/j.1365-2486.2011.02436.x

Katopodis, C. (2005). Developing a toolkit for fish passage, ecological flow management and fish habitat works. Journal of Hydraulic Research, 43(5), 451-467. DOI: 10.1080/00221680509500144

Kipanyula, M. J., Maina, K. W., & Maulilio Kipanyula, C. J. (2016). Morphological and adaptational changes associated with fish migration from fresh to marine water bodies. International Journal of Fisheries and Aquatic Studies, 4, 125-129.

Langerhans, R. B., Layman, C. A., Shokrollahi, A. M., & DeWitt, T. J. (2004). Predator‐driven phenotypic diversification in Gambusia affinis. Evolution, 58(10), 2305-2318. DOI: 10.1111/j.0014-3820.2004.tb01605.x

Langerhans, R. B., & Reznick, D. N. (2010). Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. Fish Locomotion: an eco-ethological perspective, 220, 248. DOI: 10.1201/b10190-8

Lauder, G. V. (2000). Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. American Zoologist, 40(1), 101-122. DOI: 10.1093/icb/40.1.101

Lauder, G. V., Drucker, E. G., Nauen, J. C., & Wilga, C. D. (2003). Experimental hydrodynamics and evolution: caudal fin locomotion in fishes. In V. L. Bels, J. P. Gasc & A. Casinos (Eds), Vertebrate Biomechanics and Evolution (pp. 117-135). Oxford, England: BIOS Scientific Publishers Ltd.

Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487), 1973-1993.

Lupandin, A. I. (2005). Effect of flow turbulence on swimming speed of fish. Biology Bulletin, 32(5), 461-466. DOI: 10.1007/s10525-005-0125-z

McManamay, R. A., Peoples, B. K., Orth, D. J., Dolloff, C. A., & Matthews, D. C. (2015). Isolating causal pathways between flow and fish in the regulated river hierarchy. Canadian journal of fisheries and aquatic sciences, 72(11), 1731-1748.

Maddock, L., Bone, Q., & Rayner, J. M. (Eds.). (1994). The Mechanics and Physiology of Animal Swimming. Cambridge, U.K.: Cambridge University Press. DOI: 10.1017/CBO9780511983641

Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2015). Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology, 69(2), 219-226. DOI: 10.1007/s00265-014-1834-4

Mims, M. C., & Olden, J. D. (2012). Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 93(1), 35-45. DOI: 10.1890/11-0370.1

Mueller, M., Pander, J., & Geist, J. (2011). The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology, 48(6), 1450-1461. DOI: 10.1111/j.1365-2664.2011.02035.x

Nelson, J. A., & Claireaux, G. (2005). Sprint swimming performance of juvenile European sea bass. Transactions of the American Fisheries Society, 134(5), 1274-1284.

Nowroozi, B. N., & Brainerd, E. L. (2014). Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes. Zoology, 117(1), 28-35. DOI: 10.1016/j.zool.2013.10.003

Pease, A. A., Gonzalez-Diaz, A. A., Rodiles-Hernandez, R., & Winemiller, K. O. (2012). Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology, 57(5), 1060-1075. DOI: 10.1111/j.1365-2427.2012.02768.x

Perkin, J. S., Gido, K. B., Cooper, A. R., Turner, T. F., Osborne, M. J., Johnson, E. R., & Mayes, K. B. (2015). Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 85(1), 73-92. DOI: 10.1890/14-0121.1

Picado, J. N., Parallada, M. S., Mora, A. M., & Sánchez, A. F. (2017). Selección de hábitat de Lontra longicaudis (Carnivora, Mustelidae) bajo la influencia de la represa hidroeléctrica del río Peñas Blancas y sus tributarios, Alajuela, Costa Rica. Uniciencia, 31(1), 73-84. DOI: 10.15359/ru.31-1.8

Pichler, C., & Schiemer, F. (2008). Ecology of fishes of Quebrada Negra, Costa Rica, a first order neotropical lowland stream. Ecología de los peces de Quebrada Negra, Costa Rica, río neotropical de primer orden de tierras bajas. Stapfia, 88, 495-505.

Plaut, I. (2001). Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(1), 41-50. DOI: 10.1016/S1095-6433(01)00462-7

Robolledo, M., Landaeta, M. & Muñoz, G. (2014). Efecto del endoparásito Prosorhynchoides sp. (Trematoda: Bucephalidae) en la capacidad de nado sostenido del baunco Girella laevifrons (Osteichthyes: Kyphosidae). Revista de Biología Marina y Oceanografía, 49(3), 625-630.

Reidy, S. P., Kerr, S. R., & Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. Journal of Experimental Biology, 203(2), 347-357.

Sfakiotakis, M., Lane, D. M., & Davies, J. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237-252. DOI: 10.1109/48.757275

Shang, L., Wang, S., Tan, M., & Cheng, L. (2012). Swimming locomotion modeling for biomimetic underwater vehicle with two undulating long-fins. Robotica, 30(6), 913-923. DOI: 10.1017/S0263574711001159

Sibaja, A. A., Bussing, W., Garita-Alvarado, C., & López, M. (2013). Annotated checklist of the freshwater fishes of continental and insular Costa Rica: additions and nomenclatural revisions. Check List, 9, 987. DOI: 10.15560/9.5.987

Tabash, F. B. & Guadamuz, S. (2000). A management plan for the sport fishery of Parachromis dovii (Pisces: Cichlidae) (Gunther 1864) in Hule lake, Costa Rica. Revista de Biologia Tropical, 48(2-3), 473-485.

Trujillo-Jiménez, P. (1998). Trophic spectrum of the cichlids Cichlasoma (Parapetenia) istlanum and Cichlasoma (Arconcentrus) nigrofasciatum in the Amacuzac River, Morelos, Mexico. Journal of Freshwater Ecology, 13(4), 465-473. DOI: 10.1080/02705060.1998.9663643

Videler, J. J. (1993). Fish Swimming. London, U.K.: Chapman & Hall. DOI: 10.1007/978-94-011-1580-3

Wardle, C., & He, P. (1988). Burst swimming speeds of mackerel, Scomber scombrus. Journal of Fish Biolology, 32, 471-478. DOI: 10.1111/j.1095-8649.1988.tb05382.x

Weihs, D. (1973). Energetic Advantages of Burst Swimming of Fish. Journal of Theoretical Biology, 48(1), 215-229. DOI: 10.1016/0022-5193(74)90192-1

Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, G., Darwall, W., Lujan, N. K., Harrison, I., Stiassny, M. L. J., Silvano, R. A. M., Fitzgerald, D. B., Pelicice, F. M., Agostinho, A. A., Gomes, L. C., Albert, J. S., Baran, E., Petrere Jr., M., Zarfl, C., Mulligan, M., Sullivan, J. P., Arantes, C. C., Sousa, L. M., Koning, A. A., Hoeinghaus, D. J., Sabaj, M., Lundberg, J. G., Armbruster, J., Thieme, M. L., Petry, P., Zuanon, J., Torrente, G. V., Snoeks, J., Rainboth, C. W., Pavanelli, C. S., Akama, A., van Soesbergen, A., & Sáenz, L. (2016). Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351(6269), 128-129. DOI: 10.1126/science.aac7082

Wisenden, B. D. (1994). Factors affecting reproductive success in free-ranging convict cichlids (Cichlasoma nigrofasciatum). Canadian Journal of Zoology, 72(12), 2177-2185. DOI: 10.1139/z94-291
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.