Producción de nanocelulosa a partir de rastrojo de piña y raquis de palma africana
DOI:
https://doi.org/10.22458/urj.v15i2.4593Palabras clave:
biomasa, nanomateriales, residuo, tecnología, valorizaciónResumen
Introducción: La nanocelulosa, la forma nanométrica de la celulosa, puede ser producida mediante diversos métodos, incluyendo tratamientos químicos, ruptura física o ambos. Los residuos agroindustriales, como el raquis de aceite de palma y el rastrojo de piña, suelen usarse como combustible o para compostaje en las plantaciones. Sin embargo, no se utilizan para productos de mayor valor agregado. Objetivo: Producir nanofibras de celulosa a partir de sistemas de baja energía y bajos requerimientos de insumos. Métodos: Caracterizamos químicamente el rastrojo de piña y el raquis de aceite de palma africana y los sometimos a degradación química y tratamientos mecánicos para obtener nanofibras de celulosa. Degradamos las fibras con ácido acético (HOAc) y las caracterizamos con microscopía visible, microscopía de fluorescencia, espectroscopía infrarroja, difracción de rayos X y microscopía electrónica de transmisión. Resultados: Las hojas de piña y los raquis de aceite de palma africana presentaron contenidos de celulosa de 35,8 ± 0,5% y 17,9 ± 0,1%, respectivamente. Obtuvimos nanofibras con espesores de 40nm y 10,8nm. Conclusión: El método híbrido de tratamiento químico y ruptura mecánica resultó exitoso en la obtención de nanocelulosa fibrilar utilizando reactivos de baja concentración.
Citas
Alawar, A., Hamed, A. M., & Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite. Composites: Part B: Engineering, 40(7), 601–606.
Ahmed, B., Bezazi, A., Bourchak, M., Scarpa, F., & Zhu, C. (2014). Thermochemical and statistical mechanical properties of natural sisal fibres. Composites: Part B: Engineering, 67, 481–489.
Amroune, S., Bezazi, A., Belaadi, A., Zhu, C., Scarpa, F., Rahatekar, S., & Imad, A. (2014). Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Composites Part A. Applied Science and Manufacturing, 71, 98-106.
Bendahou, A., Dufresne, A., Kaddami, H., & Habibi, Y. (2007). Isolation and structural characterization of hemicelluloses from palm of Pheonix dactylifera L. Carbohydrate Polymers, 68(3), 601–608.
Bezazi, A., Belaadi, A., Bourchak, M., Scarpa, F., & Boba, K. (2014). Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Composites: Part B: Engineering, 66, 194–203.
Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725. https://doi.org/10.1016/j.carbpol.2010.03.046
Csiszar, E., Kalic, P., Kobol, A., & Ferreira, E. de P. (2016). The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrasonics Sonochemistry, 31, 473–480. https://doi.org/10.1016/j.ultsonch.2016.01.028
Dopico-Ramírez, D., García-García, L., Abril-González, A., Hernández-Corvo, Y., & Cordero-Fernández, D. (2012). Lignina de bagazo como fibra dietética. ICIDCA., 46(1), 46-50.
Fahma, F., Iwamoto, S., Hori, N., Iwata, T., & Takemura, A. (2010). Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose, 17, 977–985. https://doi.org/10.1007/s10570-010-9436-4
Fahma, F., Hori, N., & Iwata, T. Takemura, A. (2017). PVA nanocomposites reinforced with cellulose nanofibers. Emirates Journal of Food and Agriculture, 29(5), 323–329. https://ejfa.me/index.php/journal/article/view/1199/882
Galiwango, E., Abdel, N. S., Al-Marzouqi, A. H., Abu-Omar, M. M., & Khaleel, A. A. (2018). Klason method: an effective method for isolation of lignin fractions from date palm biomass waste. Chemical and Process Engineering Research, 57, 46–58.
Galiwango, E., Abdel, N., Al-Marzouqi, H. A., Abu-Omar, M. M., & Khaleel, A. A. (2019). Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon, 5, e02937. https://doi.org/10.1016/j.heliyon.2019.e02937
Ichwan, M., Onyianta, A. J., Trask, R. S., Etale, A., & Eichhorn, S. J. (2023). Production and characterization of cellulose nanocrystals of different allomorphs from oil palm empty fruit bunches for enhancing composite interlaminar fracture toughness. Carbohydrate Polymer Technologies and Applications, 5, 100272. https://doi.org/10.1016/j.carpta.2022.100272
Irías, A., & Lutz, G. (2014). Composición química de la biomasa residual de la planta de piña variedad MD2 proveniente de Guácimo, Limón. Ciencia y Tecnología, 30(2), 27–34.
Jiang, F., & Hsieh, Y-L. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 95(1), 32-40.
Jirón, E., Rodríguez, K., & Bernal, C. (2020). Cellulose Nanofiber Production from Banana Rachis. International Journal of Engineering Science and Computing, 10(2), 24683-24689.
Jirón-García, E. G., Rodríguez-Mora, K., & Bernal-Samaniego, C. (2022). Obtención de nanocelulosa a partir de raquis de palma africana y bagazo de caña. Revista Tecnología En Marcha, 35(2), 167-181. https://doi.org/10.18845/tm.v35i3.5609
Jirón, E., & Rodríguez, K. (2022). Funcionalización de nanocelulosa de raquis de palma como adsorbente de cationes metálicos del agua. InterSedes, 23(48), 208-227. https://doi.org/10.15517/isucr.v23i48.49746
Kalia, S., Boufi, S., Celli, A., & Kango, S. (2014). Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 292, 5-31. https://doi.org/10.1007/s00396-013-3112-9
Khiari, R., Dridi-Dhaouadi, S., Aguir, C., & Mhenni, M. F. (2010a). Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. Journal of Environmental Sciences, 22(10), 1539–1543.
Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010b). Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775–780.
Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735-764.
Liu, D., Han, G., Huang, J., & Zhang, Y. (2009). Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers, 75(1), 39–43.
Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J. M., & Torre, L. (2016). Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from Posidonia oceanica Leaves. Journal of Renewable Materials, 4(3), 190–198. https://doi.org/10.7569/JRM.2015.634134
López-Herrera, M., WingChing-Jones, R., & Rojas-Bourrillón, A. (2014). Meta-análisis de los subproductos de piña (Ananas comosus) para la alimentación animal. Agronomía Mesoamerica, 25(2), 383-392.
López, M., WingChing-Jones, R., & Rojas-Bourrillón, A. (2009). Características fermentativas y nutricionales del ensilaje de rastrojo de piña (Ananas comosus). Agronomía Costarricense, 33(1), 1–15. https://goo.by/gJLWN
Maache, M., Bezazi, A., Amroune, S., Scarpa, F., & Dufresne, A. (2017). Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers, 171, 163–172.
Maneeintr, K., Leewisuttikul, T., Kerdsuk, S., & Charinpanitkul, T. (2018). Hydrothermal and enzymatic treatments of pineapple waste for energy production. Energy Procedia, 152, 1260-1265.
Mora, S., Quesada, R., Jaén, L., & Monge, D. (2020). Boletín Estadístico Agropecuario N°30, Serie cronológica 2016-2019. http://www.infoagro.go.cr/BEA/BEA30.pdf
Picado, P. (2018). UCR fomenta buenas prácticas agrícolas entre productores de piña. https://www.ucr.ac.cr/noticias/2018/6/21/ucr-fomenta-buenas-practicas-agricolas-entre-productores-de-pina.html
Ravindran, L., Sreekala, M. S., & Thomas, S. (2010). Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules, 131, 858–870.
Rigg-Aguilar, P., Moya, R., Oporto-Velásquez, G. S., Vega-Baudrit, J., Starbird, R., Puente-Urbina, A., Méndez, D., Potosme, L. D., & Esquivel, M. (2020). Micro-and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives. Journal of Nanomaterials, 2020, 1393160. https://doi.org/10.1155/2020/1393160
Rodriguez-Gacio, M. del C., Iglesias-Fernández, R., Carbonero, P., & Matilla, A. J. (2012). Softening-up mannan-rich cell walls. Journal of Experimental Botany, 63(11), 3975–3988. https://doi.org/10.1093/jxb/ers096
Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., &. Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers, 92(2), 1928–1933.
Scheller, H., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315
Shaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842. https://doi.org/10.1039/C7RA11157F
Sharma, U. (1981). Investigations on the fibers of pineapple [Ananas comosus (L). Merr.] leaves. Carbohydrate Research, 97(2), 323-329.
Siqueira, G., Bras, J., & Dufresne, A. (2010). Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers, 2(4), 728-765. https://doi.org/10.3390/polym2040728
Sun, R., Tomkinson, J., Sun, X. F., & Wang., N. (2000). Fractional isolation and physico-chemical characterization of alkali-soluble lignins from fast-growing poplar wood. Polymer, 41(23), 8409-8417.
Vargas, J., & Rodríguez, K. (2021). Funcionalización de nanocelulosa a partir de rastrojo de piña y raquis de palma africana. Científica, 25(2), 1–19. https://doi.org/10.46842/ipn.cien.v25n2a08
Xiong, J., Li, Q., Shi, Z., & Ye, J. (2017). Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Research International, 100, 858–863.
Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans Regia L.) Shell Agricultural Waste. Polymers, 11(7), 1130. https://doi.org/10.3390/polym11071130
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 UNED Research Journal
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Nota: Este resumen contiene un copyright incorrecto debido a problemas técnicos. Los autores que publican en esta revista aceptan los siguientes términos: Los autores conservan los derechos de autor y otorgan a la revista el derecho de primera publicación, con la obra simultáneamente bajo una Licencia de Atribución de Creative Commons que permite a otros compartir la obra con el reconocimiento de la autoría y la publicación inicial en esta revista.
Los contenidos se pueden reproducir citando la fuente según la licencia de Acceso Abierto CC BY 4.0. El almacenamiento automático en repositorios está permitido para todas las versiones. Incentivamos a los autores a publicar los datos originales y bitácoras en repositorios públicos, y a incluir los enlaces en todos los borradores para que los revisores y lectores puedan consultarlos en cualquier momento.
La revista está financiada con fondos públicos a través de la Universidad Estatal a Distancia. La independencia editorial y el cumplimiento ético están garantizados por la Comisión de Editores y Directores de Revistas de la UNED. No publicamos pautas publicitarias pagadas ni recibimos financiamiento de la empresa privada.