Relaciones filogenéticas de un virus de la rabia aislado en Costa Rica

Relaciones filogenéticas de un virus de la rabia aislado en Costa Rica

Autores/as

DOI:

https://doi.org/10.22458/urj.v14i1.3713

Palabras clave:

análisis filogenéticos, Secuenciación de Nueva Generaciób (NGS), Desmodus rotundus, Costa Rica

Resumen

Introducción: En Centroamérica, el ciclo selvático de la rabia es una carga sanitaria importante. El gobierno de Costa Rica monitorea los casos desde 1985 y aún se reportan infecciones por murciélagos en animales silvestres, ganado y humanos, lo que genera la necesidad de una mayor caracterización de estos patógenos en la región. Objetivo: Comparar análisis filogenéticos de rabia de genomas completos con estudios de genes de nucleoproteínas. Métodos: Para los análisis filogenéticos, utilizamos cuatro muestras de tejido antirrábico recolectadas en 2018 y generamos genomas completos mediante secuenciación de próxima generación (NGS). También extrajimos ARN de tejidos de casos confirmados y generamos ADNss utilizando varios cebadores. Se generó ADN de doble hebra y se utilizó para generar bibliotecas genómicas. Resultados: Describimos, por primera vez, el genoma completo de cuatro secuencias del virus de la rabia aisladas en Costa Rica en 2018. Los árboles del genoma completo se asemejaban a la topología de los árboles de genes de nucleoproteínas. Todos los aislamientos estaban relacionados con Desmodus rotundus. Un grupo de muestra en Lineage (L) 2, y el grupo de muestras restante en L1, coincidió con informes anteriores de virus de rabia regionales. Conclusión: Nuestro método produce “ensamblajes” virales válidos a partir de muestras clínicas sin enriquecimiento previo y sin aislamiento viral.

Citas

Almeida, M. F., Martorelli, L. F. A., Aires, C. C., Sallum, P. C., Durigon, E. L., & Massad, E. (2005). Experimental rabies infection in haematophagous bats Desmodus rotundus. Epidemiology and Infection, 133(3), 523–527. https://doi.org/10.1017/S0950268804003656

Amarilla, A. C. F., Pompei, J. C. A., Araujo, D. B., Vázquez, F. A., Galeano, R. R., Delgado, L. M., Bogado, G., Colman, M., Sanabria, L., Iamamoto, K., Garcia, R., Assis, D., Recalde, R., Martorelli, L. F., Quiñones, E., Cabello, A., Martini, M., Cosivi, O., Durigon, E. L., & Favoretto, S. R. (2018). Re-emergence of rabies virus maintained by canid populations in Paraguay. Zoonoses and Public Health, 65(1), 222–226. https://doi.org/10.1111/zph.12392

Badilla, X., Pérez-Herra, V., Quirós, L., Morice, A., Jiménez, E., Sáenz, E., Salazar, F., Fernández, R., Orciari, L., Yager, P., Whitfield, S., & Rupprecht, C. E. (2003). Human rabies: A reemerging disease in Costa Rica? Emerging Infectious Diseases, 9(6), 721–723. https://doi.org/10.3201/eid0906.020632

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021

Bano, I., Sajjad, H., Shah, A. M., Leghari, A., Mirbahar, K. H., Shams, S., & Soomro, M. (2016). A Review of Rabies Disease, its Transmission and Treatment. Journal of Animal Health and Production, 4(4), 140–144. https://doi.org/10.14737/journal.jahp/2016/4.4.140.144

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Brito-Hoyos, D. M., Brito, E., & Villalobos, R. (2013). Distribución geográfica del riesgo de rabia de origen silvestre y evaluación de los factores asociados con su incidencia en Colombia, 1982-2010. Revista Panamericana de Salud Pública, 33(1), 8–14. https://doi.org/10.1590/s1020-49892013000100002

Brown, J., Pirrung, M., & McCue, L. A. (2017). FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33(19), 3137–3139. https://doi.org/10.1093/bioinformatics/btx373

Brunker, K., Nadin-Davis, S., & Biek, R. (2018). Genomic sequencing, evolution and molecular epidemiology of rabies virus. Revue Scientifique et Technique (International Office of Epizootics), 37(2), 401–408. https://doi.org/10.20506/rst.37.2.2810

Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176

Calderón, A., Guzmán, C., Mattar, S., Rodríguez, V., Acosta, A., & Martínez, C. (2019). Frugivorous bats in the Colombian Caribbean region are reservoirs of the rabies virus. Annals of Clinical Microbiology and Antimicrobials, 18(1), 1–8. https://doi.org/10.1186/s12941-019-0308-y

Capobianchi, M. R., Giombini, E., & Rozera, G. (2013). Next-generation sequencing technology in clinical virology. Clinical Microbiology and Infection, 19(1), 15–22. https://doi.org/10.1111/1469-0691.12056

Cargnelutti, J. F., de Quadros, J. M., Martins, M., Batista, H. B. C. R., Weiblen, R., & Flores, E. F. (2017). Glycoprotein-G-gene-based molecular and phylogenetic analysis of rabies viruses associated with a large outbreak of bovine rabies in southern Brazil. Archives of Virology, 162(12), 3697–3704. https://doi.org/10.1007/s00705-017-3533-8

Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44(D1), D67–D72. https://doi.org/10.1093/nar/gkv1276

de Almeida Campos, A. C., Romano, C. M., Melo, F. L., Araújo, D. B., Cunha, E. M. S., Sacramento, D. R. V., Durigon, E. L., & Lazarini, S. R. F. (2020). Phylogenetic analysis of near full-length sequences of the Desmodus rotundus genetic lineage of rabies virus. Infection, Genetics and Evolution, 80, 104179. https://doi.org/10.1016/j.meegid.2020.104179

Deforche, K. (2017). An alignment method for nucleic acid sequences against annotated genomes. BioRxiv, 200394. https://doi.org/10.1101/200394

Delmas, O., Holmes, E. C., Talbi, C., Larrous, F., Dacheux, L., Bouchier, C., & Bourhy, H. (2008). Genomic diversity and evolution of the lyssaviruses. PLoS ONE, 3(4), e2057. https://doi.org/10.1371/journal.pone.0002057

Desai, A., Marwah, V. S., Yadav, A., Jha, V., Dhaygude, K., Bangar, U., Kulkarni, V., & Jere, A. (2013). Identification of Optimum Sequencing Depth Especially for De Novo Genome Assembly of Small Genomes Using Next Generation Sequencing Data. PLoS ONE, 8(4), e60204. https://doi.org/10.1371/journal.pone.0060204

Desjardins, P., & Conklin, D. (2010). NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments, 45, 1–4. https://doi.org/10.3791/2565

Drummond, A. J., Nicholls, G. K., Rodrigo, A. G., & Solomon, W. (2002). Estimating Mutation Parameters, Population History and Genealogy Simultaneously from Temporally Spaced Sequence Data. Genetics, 161, 1307–1320. https://doi.org/10.1093/genetics/161.3.1307

Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–1973. https://doi.org/10.1093/molbev/mss075

Ellison, J. A., Gilbert, A. T., Recuenco, S., Moran, D., Alvarez, D. A., Kuzmina, N., Garcia, D. L., Peruski, L. F., Mendonça, M. T., Lindblade, K. A., & Rupprecht, C. E. (2014). Bat Rabies in Guatemala. PLoS Neglected Tropical Diseases, 8(7), e3070. https://doi.org/10.1371/journal.pntd.0003070

Escobar, L. E., Peterson, T., Favi, M., Yung, V., & Medina-Vogel, G. (2015). Bat-borne rabies in Latin America. Revista Do Instituto de Medicina Tropical de Sao Paulo, 57(1), 63–72. https://doi.org/10.1590/S0036-46652015000100009

Garcés-Ayala, F., Aréchiga-Ceballos, N., Ortiz-Alcántara, J. M., González-Durán, E., Pérez-Agüeros, S. I., Méndez-Tenorio, A., Torres-Longoria, B., López-Martínez, I., Hernández-Rivas, L., Díaz-Quiñonez, J. A., & Ramírez-González, J. E. (2017). Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico. Archives of Virology, 162(12), 3629–3637. https://doi.org/10.1007/s00705-017-3529-4

Gorbalenya, A. E., & Lauber, C. (2017). Phylogeny of Viruses. Reference Module in Biomedical Sciences. https://doi.org/10.1016/b978-0-12-801238-3.95723-4

Hall, T., Biosciences, I., & Carlsbad, C. (2011). BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2(1), 60–61.

Houldcroft, C. J., Beale, M. A., & Breuer, J. (2017). Clinical and biological insights from viral genome sequencing. Nature Reviews Microbiology, 15(3), 183–192. https://doi.org/10.1038/nrmicro.2016.182

Hutter, S. E., Brugger, K., Sancho V. H., González, R., Aguilar, O., León, B., Tichy, A., Firth, C. L., & Rubel, F. (2016). Rabies in Costa Rica: Documentation of the Surveillance Program and the Endemic Situation from 1985 to 2014. Vector-Borne and Zoonotic Diseases, 16(5), 334–341. https://doi.org/10.1089/vbz.2015.1906

Johnson, N., Aréchiga-Ceballos, N., & Aguilar-Setien, A. (2014). Vampire bat rabies: Ecology, epidemiology and control. Viruses, 6(5), 1911–1928. https://doi.org/10.3390/v6051911

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Kuzmin, I. V., Shi, M., Orciari, L. A., Yager, P. A., Velasco-Villa, A., Kuzmina, N. A., Streicker, D. G., Bergman, D. L., & Rupprecht, C. E. (2012). Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009. PLoS Pathogens, 8(6), e1002786. https://doi.org/10.1371/journal.ppat.1002786

Lavergne, A., Darcissac, E., Bourhy, H., Tirera, S., de Thoisy, B., & Lacoste, V. (2016). Complete genome sequence of a vampire bat rabies virus from French Guiana. Genome Announcements, 4(2), e00188-16. https://doi.org/10.1128/genomeA.00188-16

León, B., Fallas González, S., Miranda Solís, L., Ramírez-Cardoce, M., Moreira-Soto, A., Cordero-Solórzano, J. M., Elisabeth Hutter, S., González-Barrientos, R., & Rupprecht, C. E. (2021). Rabies in Costa Rica – Next Steps Towards Controlling Bat-Borne Rabies After its Elimination in Dogs. Yale Journal of Biology and Medicine, 94(2), 311-329.

Marston, D. A., McElhinney, L. M., Ellis, R. J., Horton, D. L., Wise, E. L., Leech, S. L., David, D., de Lamballerie, X., & Fooks, A. R. (2013). Next generation sequencing of viral RNA genomes. BMC Genomics, 14(1), 1-12. https://doi.org/10.1186/1471-2164-14-444

Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), vev003. https://doi.org/10.1093/ve/vev003

Maurier, F., Beury, D., Fléchon, L., Varré, J.-S., Touzet, H., Goffard, A., Hot, D., & Caboche, S. (2019). A complete protocol for whole-genome sequencing of virus from clinical samples: Application to coronavirus OC43. Virology, 531, 141–148. https://doi.org/10.1016/j.virol.2019.03.006

Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). 2010 Gateway Computing Environments Workshop, GCE 2010. 2010 Gateway Computing Environments Workshop, GCE 2010.

Mochizuki, N., Kobayashi, Y., Sato, G., Hirano, S., Itou, T., Ito, F. H., & Sakai, T. (2011). Determination and molecular analysis of the complete genome sequence of two wild-type rabies viruses isolated from a haematophagous bat and a frugivorous bat in Brazil. Journal of Veterinary Medical Science, 73(6), 759–766. https://doi.org/10.1292/jvms.10-0238

Moser, L. A., Ramirez-Carvajal, L., Puri, V., Pauszek, S. J., Matthews, K., Dilley, K. A., Mullan, C., McGraw, J., Khayat, M., Beeri, K., Yee, A., Dugan, V., Heise, M.T., Frieman, M.B., Rodriguez, L.L., Bernard, K.A., Wentworth, D.E., Stockwell, T.B., Shabman, R.S. (2016). A universal next-generation sequencing protocol to generate noninfectious containment RNA viruses. MSystems, 1(3), e00039-15. https://doi.org/10.1128/mSystems.00039-15

NCBI Resource Coordinators. (2018). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46(D1), D8-D13. https://doi.org/10.1093/nar/gkx1095

Oyola, S. O., Gu, Y., Manske, M., Otto, T. D., O’Brien, J., Alcock, D., MacInnis, B., Berriman, M., Newbold, C. I., Kwiatkowski, D. P., Swerdlow, H. P., & Quail, M. A. (2013). Efficient depletion of host DNA contamination in malaria clinical sequencing. Journal of Clinical Microbiology, 51(3), 745–751. https://doi.org/10.1128/JCM.02507-12

Sadeuh-Mba, S. A., Momo, J. B., Besong, L., Loul, S., & Njouom, R. (2017). Molecular characterization and phylogenetic relatedness of dog-derived Rabies Viruses circulating in Cameroon between 2010 and 2016. PLoS Neglected Tropical Diseases, 11(10), 1–21. https://doi.org/10.1371/journal.pntd.0006041

Salomão, C., Nacima, A., Cuamba, L., Gujral, L., Amiel, O., Baltazar, C., Cliff, J., & Gudo, E. S. (2017). Epidemiology, clinical features and risk factors for human rabies and animal bites during an outbreak of rabies in Maputo and Matola cities, Mozambique, 2014: Implications for public health interventions for rabies control. PLoS Neglected Tropical Diseases, 11(7), 1–16. https://doi.org/10.1371/journal.pntd.0005787

Soltis, P. S., & Soltis, D. E. (2003). Applying the Bootstrap in Phylogeny Reconstruction. Statistical Science, 18(2), 256–267. https://doi.org/10.1214/ss/1063994980

Streicker, D. G., Fallas González, S. L., Luconi, G., Barrientos, R. G., & Leon, B. (2019). Phylodynamics reveals extinction–recolonization dynamics underpin apparently endemic vampire bat rabies in Costa Rica. Proceedings of the Royal Society B: Biological Sciences, 286(1912). https://doi.org/10.1098/rspb.2019.1527

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Vilsker, M., Moosa, Y., Nooij, S., Fonseca, V., Ghysens, Y., Dumon, K., Pauwels, R., Alcantara, L. C., Vanden Eynden, E., Vandamme, A. M., Deforche, K., & de Oliveira, T. (2019). Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics, 35(5), 871–873. https://doi.org/10.1093/bioinformatics/bty695

Yaguana, J., & López, M. (2017). La Rabia canina: Su historia, epidemiología y sus medidas de control. Revista Electrónica de Veterinaria, 18(9), 1-13.

Publicado

2021-12-15

Cómo citar

Castro Rodríguez, L., León, B., & Ramírez Carvajal, L. (2021). Relaciones filogenéticas de un virus de la rabia aislado en Costa Rica. UNED Research Journal, 14(1), e3713. https://doi.org/10.22458/urj.v14i1.3713

Número

Sección

Artículos
Loading...