Variación espacial de los parámetros fisicoquímicos en un humedal artificial para el tratamiento de aguas residuales: un ejemplo del uso del lenguaje de programación R

Variación espacial de los parámetros fisicoquímicos en un humedal artificial para el tratamiento de aguas residuales: un ejemplo del uso del lenguaje de programación R

Autores/as

  • Junior Pastor Pérez-Molina Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica https://orcid.org/0000-0002-3396-0599
  • Carola Scholz Laboratorio de Fitotecnología (LAFITOTEC), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica. https://orcid.org/0000-0001-6570-6360
  • Roy Pérez-Salazar Laboratorio de Gestión de Desechos y Aguas Residuales (LAGEDE), Escuela de Química, Universidad Nacional, Costa Rica https://orcid.org/0000-0002-8137-8448
  • Carolina Alfaro-Chinchilla Laboratorio de Gestión de Desechos y Aguas Residuales (LAGEDE), Escuela de Química, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0002-3965-0540
  • Ana Abarca Méndez Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0001-7815-0568
  • Leandro Araya Leitón Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0001-9930-9515
  • Jeslyn Carranza Chaves Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0002-8420-3029
  • Addy Echevarría Figueroa Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0001-9596-5662
  • Mariana Elizondo Blanco Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0002-8408-1543
  • Rachel Ardón Rivera Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0002-9642-3176
  • Sofía Flores Aguilar Laboratorio de Ecología Funcional y Ecosistemas Tropicales (LEFET), Escuela de Ciencias Biológicas, Universidad Nacional, Costa Rica, 86-3000 https://orcid.org/0000-0002-1736-3655
  • Catalina Solís Calderón Laboratorio Nacional de Aguas, Área de Microbiología, Instituto Costarricense de Acueductos y Alcantarillados (AyA), Costa Rica, 30306 https://orcid.org/0000-0002-7896-9474

DOI:

https://doi.org/10.22458/urj.v13i1.3294

Palabras clave:

Pennisetum alopecuroides, sistema de humedales artificiales de flujo sub-superficial, potencial de oxidación-reducción, oxígeno disuelto, conductividad

Resumen

Introducción: La implementación de sistemas de tratamiento de aguas residuales como los humedales artificiales, ha tenido gran interés en la última década por su bajo costo y efectividad en el tratamiento de aguas residuales. Objetivo: Evaluar la variación espacial de algunos parámetros fisicoquímicos en un sistema de humedal construido de flujo sub-superficial de Pennisetum alopecuroides (Pennisetum) y un Control (no plantado). Se proporciona un ejemplo de análisis de dinámica espacial de parámetros fisicoquímicos mediante el uso del lenguaje de programación R. Metodología: Cada una de las celdas (Pennisetum y Control) tenía 12 piezómetros, organizados en tres columnas y cuatro filas con una separación de 3,25 m y 4,35 m, respectivamente. Se midieron en agua del flujo de entrada y salida de ambas condiciones Control y Pennisetum (n = 8): la turbidez, la demanda bioquímica de oxígeno (DBO), la demanda química de oxígeno (DQO), el nitrógeno Kjeldahl total (TKN), el nitrógeno amoniacal (N-NH4), el nitrógeno orgánico (N-org.) y el fósforo (P-PO4-3). Además, se midieron el potencial de oxidación-reducción (ORP), oxígeno disuelto (DO), conductividad, pH y temperatura del agua (n = 167) en los piezómetros. Resultados: No se hallaron diferencias estadísticamente significativas entre celdas para TKN, N-NH4, conductividad, turbidez, BOD y COD (p>0,05); pero ambas celdas presentaron una reducción significativa en estos parámetros (p<0,05). La eliminación de TKN y N-NH4 fue de 65,8 a 84,1% y de 67,5 a 90,8%, respectivamente. La disminución de turbidez, conductividad, BOD y COD fue entre 95,1-95,4%; 15-22,4%; 65,2-77,9% y 57,4-60,3% respectivamente. Ambas celdas mostraron un gradiente creciente de ORP a lo largo de la dirección del flujo de agua, contrario a la conductividad (p<0,05). Sin embargo, OD, pH y temperatura fueron inconsistentes en la dirección del flujo de agua en ambas. Conclusiones: Pennisetum demostró eficacia en la remoción de contaminantes, pero presentó resultados similares a Control. Hay duda si a largo plazo puede demostrarse como una opción superior. El análisis de variación espacial no reflejó ninguna obstrucción del flujo a lo largo de los CWs; pero se pueden distinguir rutas de flujo preferenciales. Se proporcionó un repositorio de código abierto de R. 

Citas

​​Ahmad, S., Majhi, P. K., Kothari, R., & Singh, R. P. (2020). Industrial Wastewater Footprinting: A Need for Water Security in Indian Context. Environmental Concerns and Sustainable Development, 1, 197–212. https://doi.org/10.1007/978-981-13-5889-0_10

AyA, MINAE & MS. (2016). Política Nacional de Saneamiento en Aguas Residuales 2016-2045 (1st ed.). AyA-MINAE-MS. Retrieved from https://www.aya.go.cr/Noticias/Documents/Politica Nacional de Saneamiento en Aguas Residuales marzo 2017.pdf

Cui, L., Ouyang, Y., Gu, W., Yang, W., & Xu, Q. (2013). Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system. Bioresource Technology, 146, 656–662. https://doi.org/10.1016/j.biortech.2013.07.105

Daphne, L. H. X., Utomo, H. D., & Kenneth, L. Z. H. (2011). Correlation between Turbidity and Total Suspended Solids in Singapore Rivers. Journal of Water Sustainability, 1(3), 313–322. https://doi.org/10.11912/jws.1.3.313-322

Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., & Liu, R. (2015). A review of a recently emerged technology: Constructed wetland – Microbial fuel cells. Water Research, 85, 38–45. https://doi.org/10.1016/j.watres.2015.08.016

García, J., Rousseau, D. P. L., Morató, J., Lesage, E., Matamoros, V., & Bayona, J. . (2010). Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review. Critical Reviews in Environmental Science and Technology, 40(7), 561–661. https://doi.org/10.1080/10643380802471076

Gomes da Silva, F. J. & Gouveia, R. M. (2020). Global Population Growth and Industrial Impact on the Environment. Cleaner Production, 33–75. https://doi.org/10.1007/978-3-030-23165-1_3

Grayson, R. B., Finlayson, B. L., Gippel, C. J., & Hart, B. T. (1996). The potential of field turbidity measurements for the computation of total phosphorus and suspended solids loads. Journal of Environmental Management, 47(3), 257–267.

Haddis, A., Van der Bruggen, B., & Smets, I. (2020). Constructed wetlands as nature based solutions in removing organic pollutants from wastewater under irregular flow conditions in a tropical climate. Ecohydrology & Hydrobiology, 20(1), 38–47. https://doi.org/10.1016/j.ecohyd.2019.03.001

He, Y., Peng, L., Hua, Y., Zhao, J., & Xiao, N. (2018). Treatment for domestic wastewater from university dorms using a hybrid constructed wetland at pilot scale. Environmental Science and Pollution Research, 25(9), 8532–8541. https://doi.org/10.1007/s11356-017-1168-7

IMN. (2020). Instituto Meterológico Nacional de Costa Rica. Retrieved January 9, 2020, from https://www.imn.ac.cr/

Kadlec, R. H. & Reddy, K. R. (2001). Temperature Effects in Treatment Wetlands. Water Environment Research, 73(5), 543–557. https://doi.org/10.2175/106143001X139614

Kassambara, A. & Mundt, F. (2020). Factoextra: extract and visualize the results of multivariate data analyses. R Package version 1.0.7. Retrieved January 9, 2020, from https://cran.r-project.org/web/packages/factoextra/index.html

López-Ocaña, G., Bautista-Margulis, R. G., Ramos-Herrera, S., Torres-Balcazar, C. A., López-Vidal, R., & Pampillón-González, L. (2018). Phytoremediation of wastewater with thalia geniculata in constructed wetlands: basic pollutants distribution. Ecology and the Environment, 228, 53–63. https://doi.org/10.2495/WP180071

Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). Package “fields” Tools for Spatial Data. R package version 11.6. January 9, 2020. Retrieved from https://doi.org/10.5065/D6W957CT

Perez-Salazar, R., Alfaro-Chinchilla, C., & Scholz, C. (2019). Experiencia en la fase de estabilización del nuevo sistema de tratamiento de aguas residuales en la Escuela de Medicina Veterinaria, Campus Benjamín Núñez, UNA. In Y. Morales-López (Ed.), Memorias del I Congreso Internacional de Ciencias Exactas y Naturales (pp. 1–8). Universidad Nacional. https://doi.org/10.15359/cicen.1.68

RCoreTeam. (2020). R: A language and environment for statistical computing (R version 3.6.1). Retrieved January 9, 2020, from https://www.r-project.org/

Rencher, A. C. (2005). A Review Of “Methods of Multivariate Analysis, Second Edition.” IIE Transactions, 37(11), 1083–1085. https://doi.org/10.1080/07408170500232784

Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd Edition. American Public Health Association.

Rügner, H., Schwientek, M., Beckingham, B., Kuch, B., & Grathwohl, P. (2013). Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environmental Earth Sciences, 69(2), 373–380. https://doi.org/10.1007/s12665-013-2307-1

Ruiz, F. F. (2012). Gestión de las Excretas y Aguas Residuales en Costa Rica: Situación Actual y Perspectiva. Retrieved January 9, 2020, from https://www.aya.go.cr/centroDocumetacion/catalogoGeneral/Gesti%C3%B3n%20de%20las%20Excretas%20y%20Aguas%20Residuales%20en%20Costa%20Rica%20%20Situaci%C3%B3n%20Actual%20y%20Perspectiva.pdf

Srivastava, P., Abbassi, R., Garaniya, V., Lewis, T., & Yadav, A. K. (2020). Performance of pilot-scale horizontal subsurface flow constructed wetland coupled with a microbial fuel cell for treating wastewater. Journal of Water Process Engineering, 33, 100994. https://doi.org/10.1016/j.jwpe.2019.100994

Tang, X., Huang, S., Scholz, M., & Li, J. (2011). Nutrient removal in vertical subsurface flow constructed wetlands treating eutrophic river water. International Journal of Environmental Analytical Chemistry, 91(7–8), 727–739. https://doi.org/10.1080/03067311003782674

Tatoulis, T., Akratos, C. S., Tekerlekopoulou, A. G., Vayenas, D. V., & Stefanakis, A. I. (2017). A novel horizontal subsurface flow constructed wetland: Reducing area requirements and clogging risk. Chemosphere, 186, 257–268. https://doi.org/10.1016/j.chemosphere.2017.07.151

Teixeira, D. L., Matos, A. T., Matos, M. P., Hamakawa, P. J., & Teixeira, D. V. (2020). Evapotranspiration of the Vetiver and Tifton 85 grasses grown in horizontal subsurface flow constructed wetlands. Journal of Environmental Science and Health, Part A, 1–8. https://doi.org/10.1080/10934529.2020.1727703

van Puijenbroek, P. J. T. M., Beusen, A. H. W., & Bouwman, A. F. (2019). Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. Journal of Environmental Management, 231, 446–456. https://doi.org/10.1016/j.jenvman.2018.10.048

Viessman, W. & Hammer, M. J. (2005). Water supply and pollution control. Michigan, USA: Pearson Prentice Hall.

Villa, A., Fölster, J., & Kyllmar, K. (2019). Determining suspended solids and total phosphorus from turbidity: comparison of high-frequency sampling with conventional monitoring methods. Environmental Monitoring and Assessment, 191(10), 605. https://doi.org/10.1007/s10661-019-7775-7

Vymazal, J. (2010). Constructed Wetlands for Wastewater Treatment. Water, 2(3), 530–549. https://doi.org/10.3390/w2030530

Vymazal, J. (2019). Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years? Chemical Engineering Journal, 378, 122117. https://doi.org/10.1016/j.cej.2019.122117

Vymazal, J. & Kröpfelová, L. (2009). Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Science of the Total Environment, 407(13), 3911–3922. https://doi.org/10.1016/j.scitotenv.2008.08.032

Xu, Q. & Cui, L. (2019). Removal of COD from synthetic wastewater in vertical flow constructed wetland. Water Environment Research, 91(12), 1661–1668. https://doi.org/10.1002/wer.1168

Publicado

2021-03-18

Cómo citar

Pérez-Molina, J. P., Scholz, C., Pérez-Salazar, R., Alfaro-Chinchilla, C., Abarca Méndez, A., Araya Leitón, L., Carranza Chaves, J., Echevarría Figueroa, A., Elizondo Blanco, M., Ardón Rivera, R., Flores Aguilar, S., & Solís Calderón, C. (2021). Variación espacial de los parámetros fisicoquímicos en un humedal artificial para el tratamiento de aguas residuales: un ejemplo del uso del lenguaje de programación R. UNED Research Journal, 13(1), e3294. https://doi.org/10.22458/urj.v13i1.3294

Número

Sección

Artículos
Loading...