Ruido ambiental en áreas verdes urbanas y periurbanas de una microcuenca en Heredia, Costa Rica

Ruido ambiental en áreas verdes urbanas y periurbanas de una microcuenca en Heredia, Costa Rica

Autores/as

  • Danny Alfaro Rojas Universidad Estatal a Distancia, Escuela de Ciencias Exactas y Naturales, Programa de Manejo de Recursos Naturales, Mercedes de Montes de Oca, San José, Costa Rica. https://orcid.org/0000-0001-7694-7194
  • Ian Portuguez Brenes Universidad Estatal a Distancia, Escuela de Ciencias Exactas y Naturales, Programa de Manejo de Recursos Naturales, Mercedes de Montes de Oca, San José, Costa Rica. https://orcid.org/0000-0001-7395-7653
  • Héctor Perdomo Velázquez Universidad Nacional Autónoma de México, Centro de Estudios Mexicanos, San Pedro, San José, Costa Rica. https://orcid.org/0000-0003-3621-3633
  • Roberto Vargas Masís Universidad Estatal a Distancia, Vicerrectoría de Investigación, Laboratorio de Investigación e Innovación Tecnológica, Sabanilla, San José, Costa Rica. https://orcid.org/0000-0003-1244-4381

DOI:

https://doi.org/10.22458/urj.v12i2.2846

Palabras clave:

Ruido ambiental, Ecoacústica, Ecología urbana, Microcuenca, Audiomoth

Resumen

Introducción: Una manifestación de los impactos ambientales provocados por la urbanización es la contaminación acústica, relacionada con la presencia de niveles sonoros no deseados provocados por actividades humanas. Estos afectan a la vida silvestre con incomodidad, estrés y otros efectos dañinos, e incluso pueden incluir daño físico. Objetivo: Analizar el ruido presente en áreas verdes periurbanas y urbanas adyacentes a la microcuenca del río Bermúdez, en Heredia, Costa Rica. Métodos: Instalamos equipos de grabación automatizados Audiomoth en seis sitios de muestreo a lo largo de la microcuenca. Se establecieron tres sitios de estudio en el área periurbana y tres en el área urbana. Los dispositivos se programaron para registrar 1 minuto cada 10 minutos durante 24 horas durante 6 días continuos, dos veces por sitio. El índice de ruido (SPL1) se utilizó para evaluar los sonidos grabados a través de medidas de presión sonora. Resultados: Los niveles de ruido promedio en el área urbana fueron significativamente más altos que en el área periurbana (V=3 383 238, p<0,001). Encontramos diferencias significativas en los seis sitios de muestreo (F = 3 773,65, p<0,001). Los niveles de ruido fueron diferentes tanto de día como de noche (F= 5 578,21, p<0,001 y F= 1 472,09, p<0,001, respectivamente). Conclusiones: Los niveles de ruido más altos se dan en áreas con mayor incidencia antrópica, básicamente de urbanización, industria, construcción y transporte, con potencial de afectar la vida silvestre local

Citas

Acosta, V. (2013). Pérdida de hábitats y biodiversidad desvanecida en la ciudad de Heredia (Costa Rica). Ambientico, 41(3), 64-74

Amable Álvarez, I., Méndez Martínez, J., Delgado Pérez, L., Acebo Figueroa, F., de Armas Mestre, J., & Rivero Llop, M. (2017). Contaminación ambiental por ruido. Revista Médica Electrónica, 39(3), 640–649.

Bradfer‐Lawrence, T., Gardner, N., Bunnefeld, L., Bunnefeld, N., Willis, S. G., & Dent, D. H. (2019). Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 10(10), 1796–1807. DOI: 10.1111/2041-210x.13254

Bustos, A. P. (2013). Paisaje sonoro en la ciudad de Bogotá: una aproximación a las características de frecuencia e intensidad del sonido en el espacio urbano (Tesis de pregrado). Pontificia Universidad Javeriana. Bogotá, Colombia. DOI: 10.1017/CBO9781107415324.004

Cohen, M. A., & Castillo, O. S. (2017). Ruido en la ciudad. Contaminación auditiva y ciudad caminable. Estudios Demográficos y Urbanos, 32(1), 65–96.

Deichmann, J. L., Hernández-serna, A., C, J. A. D., Campos-cerqueira, M., & Aide, T. M. (2017). Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecological Indicators, 74(2017), 39–48. DOI: 10.1016/j.ecolind.2016.11.002

Do Nascimento, L. A., Campos-Cerqueira, M., & Beard, K. H. (2020). Acoustic metrics predict habitat type and vegetation structure in the Amazon. Ecological Indicators, 117(May), 106679. DOI: 10.1016/j.ecolind.2020.106679

Fairbrass, A. J., Rennett, P., Williams, C., Titheridge, H., & Jones, K. E. (2017). Biases of acoustic indices measuring biodiversity in urban areas. Ecological Indicators, 83(July), 169–177. DOI: 10.1016/j.ecolind.2017.07.064

Farina, A. (2013). Soundscape Ecology: Principles, Patterns, Methods and Applications. Dordrecht, Holland: Springer. DOI: 10.1007/978-94-007-7374-5

Farina, A., James, P., Bobryk, C., Pieretti, N., Lattanzi, E., & McWilliam, J. (2014). Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17(4), 923–944. DOI: 10.1007/s11252-014-0365-0

Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58(2015), 207–215. DOI: 10.1016/j.ecolind.2015.05.057

Gasc, A., Pavoine, S., Lellouch, L., Grandcolas, P., & Sueur, J. (2015). Acoustic indices for biodiversity assessments: Analyses of bias based on simulated bird assemblages and recommendations for field surveys. Biological Conservation, 191(2015), 306–312. DOI: 10.1016/j.biocon.2015.06.018

Hernando, L., & Orozco, R. (2015). Disponibilidad del recurso hídrico en la microcuenca del río Bermúdez. Región Central de Costa Rica. Observatorio Medioambiental, 18(2015), 165–181. Recuperado de https://revistas.ucm.es/index.php/OBMD/article/viewFile/51289/47595

Hill, A. P., Prince, P., Piña Covarrubias, E., Doncaster, C. P., Snaddon, J. L., & Rogers, A. (2017). AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9(5), 1199–1211. DOI: 10.1111/2041-210X.12955

Jeon, J. Y., & Hong, J. Y. (2015). Classification of urban park soundscapes through perceptions of the acoustical environments. Landscape and Urban Planning, 141(2015), 100–111. DOI: 10.1016/j.landurbplan.2015.05.005

Joo, W., Gage, S. H., & Kasten, E. P. (2011). Analysis and interpretation of variability in soundscapes along an urban-rural gradient. Landscape and Urban Planning, 103(3–4), 259–276. DOI: 10.1016/j.landurbplan.2011.08.001

Liu, J., Kang, J., Luo, T., Behm, H., & Coppack, T. (2013). Spatiotemporal variability of soundscapes in a multiple functional urban area. Landscape and Urban Planning, 115(2013), 1–9. DOI: 10.1016/j.landurbplan.2013.03.008

Mair, P., & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. Behavior Research Methods, 52(2), 464–488. DOI: 10.3758/s13428-019-01246-w

Matsinos, Y. G., Mazaris, A. D., Papadimitriou, K. D., Mniestris, A., Hatzigiannidis, G., Maioglou, D., & Pantis, J. D. (2008). Spatio-temporal variability in human and natural sounds in a rural landscape. Landscape Ecology, 23(8), 945–959. https://doi.org/10.1007/s10980-008-9250-7

Ministerio de Salud. (14 de agosto de 2000). Reglamento para el Control de Contaminación por Ruido [N° 28718-S]. DO: Diario oficial La Gaceta N.º: 155. Recuperado de https://www.seguridadpublica.go.cr/ministerio/gestion%20ambiental/normativa%20aplicable%20y%20vigente/decretos/D28718S.pdfNemeth, E., & Brumm, H. (2010). Birds and anthropogenic noise: Are urban songs adaptive? American Naturalist, 176(4), 465–475. https://doi.org/10.1086/656275

Oro, M. I. (2017). Ecología Acústica (Tesis de grado). Universidad Politecnica de Madrid. Madrid, España.

Pandya, G. H. (2001). Urban noise–a need for acoustic planning. Environmental monitoring and assessment, 67(3), 379-388.

Pavan, G; Scaravelli, D; Favaretto, A.; & Macchio, S. (2015). Bioacoustics and Ecoacoustics Applied to Environmental. Rivista Italiana Di Acustica, 39(2), 68–74.

Pieretti, N., Duarte, M. H. L., Sousa-Lima, R. S., Rodrigues, M., Young, R. J., & Farina, A. (2015). Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 8(1), 215–234. DOI: 10.1177/194008291500800117

Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L., & Krause, B. L. (2011). What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology, 26(9), 1213–1232. DOI: 10.1007/s10980-011-9600-8

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape Ecology: The Science of Sound in the Landscape. BioScience, 61(3), 203–216. DOI: 10.1525/bio.2011.61.3.6

Plan Regional Urbano de la Gran Área Metropolitana (PRUGAM). (2015). Análisis del territorio periurbano, actividades ecoturísticas y paisaje de la Gran Área Metropolitana de Costa Rica. Informe final. Universidad Nacional, Heredia, Costa Rica. DOI: 10.13140/RG.2.1.5173.9606

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/.

Ramalle-Gómara, E., & Andrés de Llano, J. (2003). Utilización de métodos robustos en la estadística inferencial. Atención Primaria, 32(3), 177–182. Recuperado de https://www.elsevier.es/es-revista-atencion-primaria-27-articulo-utilizacion-metodos-robustos-estadistica-inferencial-13049898

Ramírez-Alán, O. (2019). Sinax: Sound Index Analysis for Ecologist (version 1.3). Windows. Ubicación: R package. Version 1.3. Recuperado de https://rdrr.io/github/osoramirez/Sinax/

Salinas, E., & Pérez, L. (2011). Procesos urbanos recientes en el Área Metropolitana de Concepción: transformaciones morfológicas y tipologías de ocupación. Revista de Geografia Norte Grande, 49(2011), 79–97. DOI: 10.4067/S0718-34022011000200006.

Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., Warner, K. A., Nelson, M. D., White, C., Briggs, J., McFarland, S., & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982–1005. DOI: 10.1111/brv.12207

Sorensen, M., Barzetti, V., Keipi, K., & Williams, J. (1998). Manejo de las áreas verdes urbanas. Washington D.C., Estados Unidos: División de Medio Ambiente del Departamento de Desarrollo Sostenible del Banco Interamericano de Desarrollo (BID). Recuperado de https://publications.iadb.org/es/publicacion/15940/manejo-de-las-areas-verdes-urbanas

Sueur, J., Farina, A., Bobryk, C., Llusia, D., McWilliam, J., & Pieretti, N. (2014). Ecology and acoustics: emergent properties from community to landscape. In Ecoacoustics. Ecology and acoustics: emergent properties from community to landscape. Paris, France: Muséum national d'Histoire naturelle

Sueur, J., Farina, A., Gasc, A., Pieretti, N., & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100(4), 772–781. DOI: 10.3813/AAA.918757

Towsey, M., Wimmer, J., Williamson, I., & Roe, P. (2014). The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21(100), 110–119. DOI: 10.1016/j.ecoinf.2013.11.007

Ureña, N., Jiménez, F., Reynolds, J., & Jones, J. (2005). Efectos del aumento poblacional. Recursos Naturales y Ambiente, 48(2005), 75–80.

Welch, B. L. (1951). On the Comparison of Several Mean Values: An Alternative Approach. Biometrika, 38(3/4), 330. DOI: 10.2307/2332579

Publicado

2020-10-13

Cómo citar

Alfaro Rojas, D., Portuguez Brenes, I., Perdomo Velázquez, H. ., & Vargas Masís, R. (2020). Ruido ambiental en áreas verdes urbanas y periurbanas de una microcuenca en Heredia, Costa Rica. UNED Research Journal, 12(2), e2846. https://doi.org/10.22458/urj.v12i2.2846

Número

Sección

Artículos
Loading...