Perfil fisiológico y bacteriológico del pez Clarias gariepinus (Siluriformes: Clariidae) expuesto crónicamente a diferentes concentraciones de lixiviados de residuos municipales en Nigeria
DOI:
https://doi.org/10.22458/urj.v11i2.2305Palabras clave:
Clarias gariepinus, lixiviados, parámetros hematológicos, parámetros bioquímicos, perfil de bacterias.Resumen
Introducción: Uno de los métodos más utilizados para el manejo de residuos es el relleno sanitario, que ha sido una preocupación ambiental importante. Objetivo: Examinar el efecto del lixiviado sobre Clarias gariepinus. Métodos: Analizamos especímenes de Clarias gariepinus (n=700) con concentraciones variables de lixiviado (0, 10, 15, 20 y 25%) en el vertedero de Amoyo, Ilorin, Nigeria. Después de 28 días de exposición, se realizaron ensayos hematológicos, bioquímicos, bacteriológicos e histopatológicos. Resultados: El pH varió de 7,78 a 13,97; cadmio, hierro, plomo, manganeso y zinc fueron 178, 134, 6 248, 400 y 3 veces, respectivamente, más altos que los límites regulatorios para cuerpos de agua, mientras que el cobre cayó dentro de los límites. Los valores de glóbulos rojos, hemoglobina, volumen de células empaquetadas, volumen celular medio, hemoglobina celular media, concentración media de hemoglobina celular, linfocitos y monocitos fueron significativamente más bajos que el control. Por el contrario, los glóbulos blancos, neutrófilos y eosinófilos aumentaron de una manera dependiente de la concentración. Hubo diferencias específicas de tejido en las respuestas de todos los parámetros bioquímicos investigados, excepto por la proteína que disminuyó significativamente en todos los tejidos. 27 aislamientos bacterianos clasificados en siete géneros incluyendo Bacillus, Klebsiella, Pseudomonas, Staphylococcus, Acinetobacter, Escherichia y Micrococcus se registraron del lixiviado y órganos seleccionados de C. gariepinus. El total de bacterias, coliformes viables y recuentos totales en el lixiviado fueron 4,2×106CFU/mL, 3,8×108CFU/mL, 3,6×106CFU/mL and 2,7×108CFU/mL, respectivamente. Las cuentas más altas se registraron en las branquias (14,2×106 UFC/mL) y las más bajas en el músculo (2,7×106 UFC/mL) en la concentración más alta y la menor del lixiviado, respectivamente. La mayoría de las bacterias aisladas del lixiviado también se recuperaron de los órganos de los peces. Escherichia coli tuvo la mayor frecuencia de aparición (26%). Conclusión: Este estudio reveló que los constituyentes tóxicos del lixiviado provocaron cambios perjudiciales en la bacteriología y fisiología de C. gariepinus.
Citas
Adedeji, O.B. (2011). Bacterial load in African catfish and Nile Tilapia sampled from ponds and natural Water. Journal of Microbiology and Biotechnology Research, 1(1), 52-59.
Aderemi, A.O., Adewumi, G.A., & Otitoloju, A. A. (2012). Municipal landfill leachate characterisation and its induction of glycogen vacuolation in the liver of Clarias gariepinus. International Journal of Environmental Protection, 2(4), 20-24.
Adewoye, S. O., & Adegunlola, G. A. (2010). Microbiological Investigation of selected organs of Clarias gariepinus exposed to wastewaters from a detergent Industry. Advances in Applied Science Research, 1(1), 9-13.
Adeyemi, O. (2015). Leachate simulated from municipal open dump induces biochemical changes in Clarias gariepinus. Research and Reviews in Biosciences, 10(1), 8-15.
Aita, N. A. A. (2014). Genotoxic, Hematological and Biochemical Changes Induced by Phenol Exposure in African Catfish (Clarias gariepinus). Global Veterinaria, 13(3), 316-324.
Alavandi, S., & Hosetti, B. B. (2013). Influence of cyanide on some antioxidant enzymes of freshwater fish, Cirrhinus mrigala (Hamilton). Journal of Agricultural Science, 58(3), 177-184.
Alikunhi, N. M., Batang, Z. B., AlJahdali, H. A., Aziz, M. A. M., & Al-Suwailem, A. M. (2016). Culture-dependent bacteria in commercial fishes: Qualitative assessment and molecular identification using 16S rRNA gene sequencing. Saudi Journal of Biological Science, 24(6), 1105-1116. DOI: 10.1016/j.sjbs.2016.05.017
APHA (American Public Health Association). (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington D.C., USA: American Public Health Association.
Apun, K., Yusof, A. M., & Jugang, K. (1999). Distribution of bacteria in tropical freshwater fish and ponds. International Journal of Environmental Health Research, 9, 285.292. DOI: 10.1080/09603129973083
Arojojoye, O., & Farombi, E. O. (2013). Biochemical evaluation of oxidative damage induced by municipal landfill leachate in the liver and kidney of albino rats. Archive of Basic and Applied Medicine, 1(1), 93-102.
Austin, B. (2006). The bacterial microflora of fish, revised. The Scientific World Journal, 6, 931-945. DOI: 10.1100/tsw.2006.181
Ayandiran, T. A., & Dahunsi, S. O. (2016). Toxicological Assessment of fish (Clarias gariepinus) from bitumen-polluted River. Environmental Monitoring and Assessment, 188(71), 1-18. DOI: 10.1007/s10661-015-5003-7
Bakare, A. A., Alabi, O. A., Gbadebo, A. M., Ogunsuyi, O. I., & Alimba, C. G. (2013). In vivo cytogenotoxicity and oxidative stress induced by electronic waste leachate and contaminated well water. Challenges, 4, 189-187. DOI: 10.3390/challe4020169
Bakare, A. A., Alimba, C. G., & Alabi, O. A. (2013). Genotoxicity and mutagenicity of solid waste leachates: A review. African Journal of Biotechnology, 12(27), 4206-4220. DOI: 10.5897/AJB2013.12014
Budi, S., Suliasih, B. A., Othman, M. S., Heng, L. Y., & Surif, S. (2016). Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Management, 55, 231-7. DOI: 10.1016/j.wasman.2015.09.022
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310. DOI: 10.1016/S0076-6879(78)52032-6
Bunch, E. C. & Bejerano, I. (1997). The effect of environmental factors on the susceptibility of hybrid tilapia Oreochromis niloticus x Oreochromis aureus to streptococcosis. Bamidgeh, 49, 67-76.
Buras, N., Duek, L., & Niv, S. (1985). Reactions of fish to microorganisms in wastewater. Applied and Environmental Microbiology, 50(4), 989-995.
Buras, N., Duek, L., Niv, S., Hepher, B., & Sandbank, E. (1987). Microbiological aspects of fish grown in treated wastewater. Water Research, 21, 1-10.
Chapman, D. (1996). Water quality assessment: a guide to the use of biota, sediments and water in environmental monitoring (2nd ed.). London, UK: Chapman and Hall. DOI: 10.4324/NOE0419216001
Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, B. J., Baum, A. … Heron, G. (2001). Biogeochemistry of landfill leachates plumes. Applied Geochemistry, 16, 659-718. DOI: 10.1016/S0883-2927(00)00082-2
Clark, S., Whitmore, D. H., & McMahon, R. F. (1979). Considerations of blood parameters of largemouth bass, Micropterus salmoides. Journal of Fishery Biology, 14, 147-158. DOI: 10.1111/j.1095-8649.1979.tb03504.x
Creusot, N., & Gruppen, H. (2008). Hydrolysis of whey protein isolate with Bacillus licheniformis protease: aggregating capacities of peptide fractions. Journal of Agriculture and Food Chemistry, 12(56), 10332-10339. DOI: 10.1021/jf801422j
Dacie, J. V., & Lewis, S. M. (2001). Practical Haematology (9th ed.). London: Churchil Livingstone.
DGKC (Deutsche Gesellschaft fur Klinische Chemie). (1970). The standard method for analysing lactate dehydrogenase enzyme. Journal of Clinical Chemistry and Clinical Biochemistry, 8, 658-659.
Dos Santos Miron, D., Shettinger, M. R., Morsh, V. M., Baldisserotto, B., Tierno, M. A., Moraes G., & Vieira V. L. P. (2005). Effects of the herbicides clomazone, quinclorac and metsufuron methyl on acetylcholinesterase activity in the silver catfish (Rhamida quelen, Heptateridae). Ecotoxicology and Environmental Safety, 61(3), 398-403. DOI: 10.1016/j.ecoenv.2004.12.019
El Gohary, A., Laila, R. A., & Genena, M. A. M. (2011). Biochemical effects of three molluscan baits against the two land snails, Monacha cantiana and Eobania vermiculata (Gastropa: Helicidae). International Journal of Agricultural Research, 6(9), 682-690. DOI: 10.3923/ijar.2011.682.690
El-Shafai, S. A., Gijzen, H. J., Nasr, F. A., & El-Gohary, F. A. (2004). Microbial quality of tilapia reared in faecal contaminated ponds. Environmental Research, 95, 231-238. DOI: 10.1016/j.envres.2004.01.002
Ensibi, C., & Daly-Yahia, M. N. (2017). Toxicity assessment of cadmium chloride on planktonic copepods Centropages ponticus using biochemical markers. Toxicological Reports, 4, 83-88. DOI: 10.1016/j.toxrep.2017.01.005
Escher, M., Wahli, T., Buttner, S., Meicr, W., & Burkhardt-Holm, P. (1999). The effect of sewage plant effluent on brown trout (Salmo trutta Fabrio): a cage experiment, Aquatic Sciences, 61, 93-110. DOI: 10.1007/s000270050055
Glusczak, L., Loro, V. L., Pretto, A., Moraes, B. S., Raabe, A., Duarte., M. F., … de Sousa Valladão, D. M. (2011). Acute exposure to glyphosate herbicide affects oxidative parameters in Piava (Leporinus obtusidens). Archives of Environmental Contamination and Toxicology, 61(4), 624-630. DOI: 10.1007/s00244-011-9652-4
Hatha, M., Vivekanandhan, V. G., Joice, J., & Christol, V. (2005). Antibiotic resistance pattern of motile aeromonads from farm raised freshwater fish. International Journal of Food Microbiology, 98, 131-134
Ibrahim, S. I., Awomuti, A. A., & Ajibade, L. T. (2012). Storage and treatment system of solid waste as strategy for sustainable environmental development in Ilorin Metropolis, Nigeria. Advances in Applied Science Research, 3(2), 801-808.
Imoh, E. U., & Udofia E. P. (2011). Domestic solid waste management in a rapidly growing Nigerian city of Uyo. Journal of Human Ecology, 36(3), 229-235
Jumawan, J. C., Salunga, T. P., & Catap, E. S. (2010). Lipid peroxidation and patterns of cadmium and lead accumulation in the vital organs of the suckermouth armored catfish, Pterygoplichthys gill, from Marikina River. Journal of Applied Science and Environmental Sanitation, 5(4), 375-390.
Kulikowska, D., & Klimiuk, E. (2008). The effect of land age on municipal leachate composition. Bioresource Technology, 99, 5981-5985. DOI: 10.1016/j.biortech.2007.10.015
Kumar, R., Surendran, P. K., & Thampuran, N. (2009). Distribution and genotypic characteristics of Salmonellar serovars isolated from tropical seafood of Cochin, India. Journal of Applied Microbiolology, 106, 515-524. DOI: 10.1111/j.1365-2672.2008.04020.x
Kurniawan, T. A., Lo, W. H., & Chan, G. Y. S. (2006). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachates. Journal of Hazard Material, 129(1-3), 80-100. DOI: 10.1016/j.jhazmat.2005.08.010
Laneret, D., Crest, M., Scharff, H., Morris, J. W., & Barlaz, M. A. (2012). A review of approaches for the long-term management of municipal solid waste landfills. Waste Management, 32(3), 498-512. DOI: 10.1016/j.wasman.2011.11.010
Lenette, E. H., Albert, B., & Willian, J. H. (1985). Manual of Clinical Microbiology (4th ed.). Washington, D.C., USA: American Society for Microbiology.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
Matejczyk, M., Plaza, G. A., Natecz-Jawecki, G., Ulfig, K., & Markowska-Szczupak, A. (2011). Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere, 82, 1017-1023. DOI: 10.1016/j.chemosphere.2010.10.066
McBean, A, Rovers, F. A., & Farquhar, G. J. (1995). Solid waste landfill engineering and design. New York: Prentice Hall PTR.
Misra, H., & Fridovish, I. (1972). Determination of the level of superoxide dismutase in whole blood. Yale University Press, 101(1972), 109.
NESREA. (2011). National Environmental (Surface and Ground Water Quality Control) Regulations (Legislation). Nigeria: FAO.
NIS (Nigerian Industrial Standard). (2007). Nigerian standards for drinking water quality. (NIS 554: 2007, ICS 13.060.20). Standard Organisation of Nigeria (SON) Governing Council.
Nordenson, N. (2004). White blood cell count and differential analysis. Environmental Health Perspective, 9, 211-221.
Official Journal of the European Union (2005). Microbiological criteria for foodstuffs. Retrieved from https://www.fsai.ie/uploadedFiles/Reg2073_2005(1).pdf
OgboOgbondeminu, F. S., & Okoye, F.C. (1992). Microbiological evaluation of an untreated domestic wastewater aquaculture system. Journal of Aquaculture in the Tropics, 7, 27-34.
Oliveira, L. F., Silva, S. M., & Martinez, C. B. R. (2014). Assessment of domestic landfill leachate toxicity to the Asian clam Corbicula fluminea via biomarkers. Ecotoxicology and Environmental Safety, 103, 17-23. DOI: 10.1016/j.ecoenv.2014.01.034
Olojo, E. A. A., Amusa, N. A., Osho, A., & Badejo, V. O. (2010). Commensal bacterial flora of Synodontis nigrita and Clarias gariepinus from River Osun, South west Nigeria, Nigeria. Research Journal of Applied Science, 5, 231-235. DOI: 10.3923/rjasci.2010.231.235
Olugbojo, J. A., & Ayoola, S. O. (2015). Comparative studies of bacterial load in fish species of commercial importance at the Aquaculture unit and lagoon front of the University of Lagos. International Journal of Fisheries and Aquaculture, 7(4), 37-46. DOI: 10.5897/IJFA14.0444
Oshode, A., Bakare, A. A., Adeogun, A. O., Efuntoye, M. O., & Sowunmi, A. A. (2008). Ecotoxicological assessment using Clariasgariepinus and microbial characterization of leachate from municipal solid waste landfill. International Journal of Environmental Research, 2(4), 391-400.
Owolabi, O.D (2011). Haematological and serum biochemical profile of the upside-down catfish Synodontis membranacea Geoffroy Saint Hilaire from Jebba Lake, Nigeria. Comparative Clinical Pathology, 20, 163-172 DOI: 10.1007/s00580-10-0973-x
Owolabi, O. D., & Omotosho, J. S. (2017). Atrazine-mediated oxidative stress responses and lipid peroxidation in the tissues of Clarias gariepinus. Iranian Journal of Toxicology, 11(2), 29-38. DOI: 10.29252/arakmu.11.2.29
Pribadi, T. D. K., Syahidah, D., Harjanti, S. D., & Malini, D. M. (2017). Alteration of gill and liver histological structure of Cyprinus carpio exposed to leachate. Biosaintifika: Journal of Biologyand Biology Education, 9(2), 287-297. DOI: 10.15294/biosaintifika.v9i2.8972
Ramesh, M., Sankaran, M., Veera-Gowtham, V., & Poopal, R. K. (2014). Haematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of water-borne selenite exposure. Chemico-Biological interactions, 207, 67-73. DOI: 10.1016/j.cbi.2013.10.018
Randi, A. S., Monserrat, J. M., Rodriguez, E. M., & Romano, L. A. (1996). Histopathological effects of cadmium on the gills of freshwater fish Macropsobrycon uruguayanae (Pisces: Atherinidae). Journal of Fish Diseases, 19(4), 311-322. DOI: 10.1046/j.1365-2761.1996.d01-82.x
Reish, D. L., & Oshida, P. S. (1987). Manual of methods in aquatic environment research, Part 10: short static bioassays. Roma, Italy: Food and Agriculture Organization.
Reitman, S., & Frankel, S. (1957). Colometric method for the determination of serum transaminase activity. American Journal of Clinical Patholology, 28, 56-68. DOI: 10.1093/ajcp/28.1.56
Ribé, V., Nehrenheim, E., Odlare, M., Gustavsson, L., Berglind, R., & Forsberg, A. (2012). Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. Waste Management, 32, 1886-1894. DOI: 10.1016/j.wasman.2012.05.011
Shepard, K. L. (1994). Functions of fish mucus. Reviews in Fish Biology and Fisheries, 4, 401-429. DOI: 10.1007/BF00042888
Toranzo, A. E., Novoa, B., Romalde, J. L., Nunez, S., Devesa, S., Marino, E., … Barja, J. L. (1993). Microflora associated with healthy and diseased turbot (Scophthalmus maximus) from three farms in northwest Spain, Aquaculture, 114, 189-202. DOI: 10.1016/0044-8486(93)90295-A
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry, 6(1), 24-27. DOI: 10.1177/000456326900600108
Tsarpali, V., & Dailianis, S. (2012). Investigation on landfill leachate toxic potency: An integrated approach with the use of stress indices in tissues of mussels. Aquatic Toxicology, 124-125, 58-65. DOI: 10.1016/j.aquatox.2012.07.008
USEPA (United States Environmental protection Agency). (2011). Source Water Assessment USEPA, Office of water. Retrieved from http://water.epa.gov/infrastructure/drinking water/sourcewater/protection/sourcewaterassessments.cfm. A
WHO (World Health Organisation) (2011). Guidelines on drinking water quality (4th ed.). Geneva, Switzerland: World Health Organisation.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Nota: Este resumen contiene un copyright incorrecto debido a problemas técnicos. Los autores que publican en esta revista aceptan los siguientes términos: Los autores conservan los derechos de autor y otorgan a la revista el derecho de primera publicación, con la obra simultáneamente bajo una Licencia de Atribución de Creative Commons que permite a otros compartir la obra con el reconocimiento de la autoría y la publicación inicial en esta revista.
Los contenidos se pueden reproducir citando la fuente según la licencia de Acceso Abierto CC BY 4.0. El almacenamiento automático en repositorios está permitido para todas las versiones. Incentivamos a los autores a publicar los datos originales y bitácoras en repositorios públicos, y a incluir los enlaces en todos los borradores para que los revisores y lectores puedan consultarlos en cualquier momento.
La revista está financiada con fondos públicos a través de la Universidad Estatal a Distancia. La independencia editorial y el cumplimiento ético están garantizados por la Comisión de Editores y Directores de Revistas de la UNED. No publicamos pautas publicitarias pagadas ni recibimos financiamiento de la empresa privada.