Climate change and tropical marine ecosystems: A review with an emphasis on coral reefs
DOI:
https://doi.org/10.22458/urj.v11i1.2317Keywords:
oceans, climate change, ocean acidification, ocean warming, ocean deoxygenationAbstract
Climate change is usually associated with warming and weather extremes that impact the human environment and terrestrial systems, but it also has profound effects on the ocean, which is probably the most unique, life-supporting feature of planet Earth. The most direct consequence of rising CO2 concentration in the atmosphere is “ocean acidification,” a term that refers to the lowering of seawater pH, but encompasses a suite of chemical changes that affect marine organisms from shell formation, to reproduction, physiology, and behavior. The oceans are also warming in pace with the atmosphere, and in fact store the vast majority of the additional heat generated by rising CO2 and other greenhouse gases in the atmosphere. This warming is causing the more mobile marine species to redistribute poleward and deeper, and is causing high mortality in more sessile species such as those that build and habituate coral reefs. But warming is also leading to a decrease in dissolved oxygen in the oceans. For tropical marine ecosystems, the combination of ocean acidification, warming, and deoxygenation will continue to impact marine ecosystems in the future. The extent of these impacts depends on which energy pathway society follows, and our abilities to reduce other stressors and assist the rate at which species can adapt and migrate to more suitable environments.References
Alvarez-Filip, L., Gill, J. A., & Dulvy, N. K. (2011). Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere, 2(10), 1-17. DOI:10.1890/es11-00185.1
Császár, N. B. M., Ralph, P. J., Frankham, R., Berkelmans, R., & van Oppen, M. J. H. (2010). Estimating the potential for adaptation of corals to climate warming. PLoS One, 5(3), e9751. DOI:10.1371/journal.pone.0009751
Cunning, R., Silverstein, R. N., & Baker, A. C. (2015). Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proceedings of the Royal Society B-Biological Sciences, 282(1809), 20141725. DOI:10.1098/rspb.2014.1725
Deutsch, C., Ferrel, A., Seibel, B., Portner, H. O., & Huey, R. B. (2015). Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132-1135. DOI:10.1126/science.aaa1605
Doropoulos, C., Ward, S., Marshell, A., Diaz-Pulido, G., & Mumby, P. J. (2012). Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds. Ecology, 93(10), 2131-2138
Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J., & Maslin, M. (2013). Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Science Reviews, 125, 123-145. DOI:10.1016/j.earscirev.2013.07.004
Dupont, S., Dorey, N., & Thorndyke, M. (2010). What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuarine, Coastal and Shelf Science, 89(2), 182-185. DOI:10.1016/j.ecss.2010.06.013
Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., … Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 1(3), 165-169. DOI:10.1038/nclimate1122
Fabricius, K. E., Noonan, S. H. C., Abrego, D., Harrington, L., & De’ath, G. (2017). Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 284(1862), 20171536. DOI:10.1098/rspb.2017.1536
Feary, D. A., Pratchett, M. S., Emslie, M. J., Fowler, A. M., Figueira, W. F., Luiz, O. J., … Booth, D. J. (2014). Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish and Fisheries, 15(4), 593-615. DOI:10.1111/faf.12036
Fiedler, P. C. (2002). Environmental change in the Eastern Tropical Pacific Ocean: review of ENSO and decadal variability. Marine Ecology Progress Series, 244, 265–283.
Gattuso, J. P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., … Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243). DOI:10.1126/science.aac4722
Gruber, N. (2011). Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 369(1943), 1980-1996. DOI:10.1098/rsta.2011.0003
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., … Buia, M. C. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454(7200), 96-99. DOI:10.1038/nature07051
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., … Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-+. DOI:10.1038/s41586-018-0041-2
Inoue, S., Kayanne, H., Yamamoto, S., & Kurihara, H. (2013). Spatial community shift from hard to soft corals in acidified water. Nature Climate Change, 3(7), 683-687. DOI:10.1038/nclimate1855
Ito, T., Minobe, S., Long, M. C., & Deutsch, C. (2017). Upper ocean O2 trends: 1958–2015. Geophysical Research Letters, 44, 4214–4223. DOI:10.1002/2017GL073613.
Jiménez, J. A. (2016). El Domo Térmico de Costa Rica: Un oasis de productividad frente a las costas del Pacífico Centroaméricano. San José, Costa Rica: Fundación MarViva Ed.
Khatiwala, S., Tanhua, T., Fletcher, S. M., Gerber, M., Doney, S. C., Graven, H. D., … Sabine, C. L. (2013). Global ocean storage of anthropogenic carbon. Biogeosciences, 10(4), 2169-2191. DOI:10.5194/bg-10-2169-2013
Kittinger, J. N., Bambico, T. M., Minton, D., Miller, A., Mejia, M., Kalei, N., … Glazier, E. W. (2016). Restoring ecosystems, restoring community: socioeconomic and cultural dimensions of a community-based coral reef restoration project. Regional Environmental Change, 16(2), 301-313. DOI:10.1007/s10113-013-0572-x
Kleypas, J. (2015). Invisible barriers to dispersal. Science, 348(6239), 1086-1087. DOI:10.1126/science.aab4122
Kleypas, J. A. (in press). The impacts of ocean acidification on marine biodiversity. In T. E. Lovejoy & L. Hannah (Eds.), Climate Change and Biodiversity. USA: Yale University Press.
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., … Zhu, D. (2018). Global Carbon Budget 2017. Earth System Science Data, 10(1), 405-448. DOI:10.5194/essd-10-405-2018
Linden, B., & Rinkevich, B. (2011). Creating stocks of young colonies from brooding coral larvae, amenable to active reef restoration. Journal of Experimental Marine Biology and Ecology, 398(1-2), 40-46. DOI:10.1016/j.jembe.2010.12.002
Lizano, O. G. (2016). Distribución espacio-temporal de la temperatura, salinidad y oxígeno disuelto alrededor del Domo Térmico de Costa Rica. Revista de Biologia Tropical, 64, S135-S152.
Lough, J. M., Anderson, K. D., & Hughes, T. P. (2018). Increasing thermal stress for tropical coral reefs: 1871-2017. Scientific Reports, 8, 6079. DOI:10.1038/s41598-018-24530-9
MacMartin, D. G., Ricke, K. L., & Keith, D. W. (2018). Solar geoengineering as part of an overall strategy for meeting the 1.5 degrees C Paris target. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 376(2119), 20160454. DOI:10.1098/rsta.2016.0454
Montoya-Maya, P. H., Smit, K. P., Burt, A. J., & Frias-Torres, S. (2016). Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean. Nature Conservation-Bulgaria(16), 1-17. DOI:10.3897/natureconservation.16.8604
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biology, 9(8), e1001127. DOI:10.1371/journal.pbio.1001127
NOAA (National Centers for Environmental Information). (2018). Climate at a glance: Global time series. Retrieved from https://www.ncdc.noaa.gov/cag/
Oschlies, A., Brandt, P., Stramma, L., & Schmidtko, S. (2018). Drivers and mechanisms of ocean deoxygenation. Nature Geoscience, 11, 467-473. DOI:10.1038/s41561-018-0152-2
Peixoto, R. S., Rosado, P. M., Leite, D. C. d. A., Rosado, A. S., & Bourne, D. G. (2017). Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Frontiers in Microbiology, 8, 341. DOI:10.3389/fmicb.2017.00341
Pinsky, M. L. (2013). Effects of climate velocity on fish and fisheries. Paper presented at the Speaker Paper for Managing Our Nation’s Fisheries; Session 2: Advancing Ecosystem-Based Decision Making, Washington, DC.
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., … Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919-925. DOI:10.1038/nclimate1958
Pörtner, H.-O., Karl, D. M., Boyd, P. W., Cheung, W. W. L., Lluch-Cota, S. E., Nojiri, Y., . . . Zavialov, P. O. (2014). Ocean systems. In C. B. Field, V. Barros, D. Dokken, K. Mach, M. Mastrandrea, T. Bilir, M. Chatterjee, K. Ebi, Y. Estrada, R. Genova, B. Girma, E. Kissel, A. Levy, S. MacCracken, P. Mastrandrea, & L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 411-484). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Ridgwell, A., & Schmidt, D. N. (2010). Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience, 3(3), 196-200. DOI:10.1038/ngeo755
Rinkevich, B. (2014). Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Current Opinion in Environmental Sustainability, 7, 28-36. DOI:10.1016/j.cosust.2013.11.018
Rogelj, J., den Elzen, M., Hohne, N., Fransen, T., Fekete, H., Winkler, H., . . . Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 degrees C. Nature, 534(7609), 631-639. DOI:10.1038/nature18307
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., … Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science, 305(5682), 367-371.
Scheibner, C., & Speijer, R. P. (2008). Late Paleocene-early Eocene Tethyan carbonate platform evolution - A response to long- and short-term paleoclimatic change. Earth-Science Reviews, 90(3-4), 71-102. DOI:10.1016/j.earscirev.2008.07.002
Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335. DOI:10.1038/nature21399
Schopmeyer, S. A., Lirman, D., Bartels, E., Gilliam, D. S., Goergen, E. A., Griffin, S. P., … Walter, C. S. (2017). Regional restoration benchmarks for Acropora cervicornis. Coral Reefs, 36(4), 1047-1057. DOI:10.1007/s00338-017-1596-3
Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., … Schwartz, K. Z. S. (2015). Committing to ecological restoration. Science, 348(6235), 638-640. DOI:10.1126/science.aaa4216
Thomas, E. (2007). Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on earth? In S. Monechi, R. Coccioni, & M. R. Rampino (Eds.), Large Scale Ecosystem Perturbation: Causes and Consequences, Geological Society of America Special Paper 424 (pp. 1-23). Boulder, CO, USA: Geological Society of America.
UNFCCC. (2015). Adoption of the Paris Agreement, Report No. FCCC/CP/2015/L.9/Rev.1. Retrieved from http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (UNFCCC, 2015):
Van Oppen, M. J. H., Gates, R. D., Blackall, L. L., Cantin, N., Chakravarti, L. J., Chan, W. Y., … Putnam, H. M. (2017). Shifting paradigms in restoration of the world’s coral reefs. Global Change Biology, 23(9), 3437-3448. DOI:10.1111/gcb.13647
Webster, N. S., Uthicke, S., Botte, E. S., Flores, F., & Negri, A. P. (2013). Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology, 19(1), 303-315. DOI:10.1111/gcb.12008
Wilson, E. O. (1992). The Diversity of Life. Cambridge, MA: Harvard University Press.
Wolff, N. H., Mumby, P. J., Devlin, M., & Anthony, K. R. N. (2018). Vulnerability of the Great Barrier Reef to climate change and local pressures. Global Change Biology, 24(5), 1978-1991. DOI:10.1111/gcb.14043
Young, C. N., Schopmeyer, S. A., & Lirman, D. (2012). A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bulletin of Marine Science, 88(4), 1075-1098. DOI:10.5343/bms.2011.1143
Zachos, J. C., Rohl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., … Kroon, D. (2005). Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308(5728), 1611-1615.
Downloads
Published
How to Cite
Issue
Section
License
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.