Bio-optimization of compost with cultures of mountain microorganisms (MM) and digested sludge from bio-digester (LDBIO)

Bio-optimization of compost with cultures of mountain microorganisms (MM) and digested sludge from bio-digester (LDBIO)

Authors

  • Fabricio Camacho Céspedes University of Georgia, Costa Rica Campus, Apartado 108-5655, Monteverde, Costa Rica
  • Lidieth Uribe Lorío Universidad de Costa Rica, Centro de Investigaciones Agronómicas
  • Quint Newcomer University of Georgia, Odum School of Ecology
  • Karen Masters Council on International Educational Exchange, Sustainability Center Monteverde Costa Rica
  • Maureen Kinyua University of California Davis, Department of Civil and Environmental Engineering

DOI:

https://doi.org/10.22458/urj.v10i2.2163

Keywords:

Agroecology, circular economy, organic fertilizers, nutrient cycling, organic matter

Abstract

Compost is a bio-fertilizer that contains nutrients, organic matter, water and microorganisms that benefit the integrity of agroecosystems. Compost quality is highly dependent on the characteristics of the materials employed in production. One of the main challenges in compost technology is quality optimization. MM are microbial cultures containing dense populations of native soil microorganisms including bacteria, fungi and actinomycetes. LDBIO are the precipitated solids found in anaerobic reactors. This is a low cost, non-experimental, economic, low resolution pre-feasibility study that uses robust laboratory analytical methods to identify whether these compounds can be used as compost optimization agents, and identify the combination of these materials that produce the highest quality compost. According the results obtained, there is empirical evidence that MM and LDBIO have potential as compost optimization agents. The compost with the best quality characteristics (macronutrient concentration, organic matter, carbon and water content, microbial biomass) is the one that contains both MM and LDBIO. The incorporation of these materials in the compost does not affect other compost quality parameters such as pH, EC and C/N ratio. It does not affect the maturity, stability and innocuity of compost. Therefore, at this level of resolution, it is concluded that it is feasible to continue researching these materials as compost optimization agents. It is recommended to implement plant growth-response tests in order to identify the potential of the optimized compost to enhance plant development.

References

Acosta Almánzar, H. A. (2012). Microorganismos eficientes de montaña: evaluación de su potencial bajo manejo agroecológico de tomate en Costa Rica. Turrialba, Costa Rica: CATIE.

Amira, R. D., Roshanida, A., Rosli, M., Zahrah, M. S. F., Anuar, J. M., & Adha, C. N. (2011). Bioconversion of empty fruit bunches (EFB) and palm oil mill effluent (POME) into compost using Trichoderma virens. African Journal of Biotechnology, 10(81), 18775-18780.

Antil, R. S., & Raj, D. (2012). Chemical and microbiological parameters for the characterization of maturity of composts made from farm and agro-industrial wastes. Archives of Agronomy and Soil Science, 58(8), 833-845. doi: 10.1080/03650340.2011.554402

Barton, L. (2012). Iron Chelation in Plants and Soil MicroorganismS. ornia, EEUU: Academic Press.

Beltrán, E., Miralles de Imperial, R., Porcel, M., Delgado, M., Beringola, M., Martín, J., & Bigeriego, M. (2002). Effect of sewage sludge compost application on ammonium-nitrogen and nitrate-nitrogen contents of an olive grove soil. Paper presented at the 12th ISCO Conference, Beiging.

Bernal, M. P., Sommer, S. G., Chadwick, D., Qing, C., Guoxue, L., & Michel Jr, F. C. (2017). Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. oogle.coQAdvances in agronomy, 144, 143-233. doi:10.1016/bs.agron.2017.03.002

Blaya, S. N., & García, G. N. (2003). uímica agrícola: el suelo y los elementos químicos esenciales para la vida vegetal. Madrid, España: Mundi-Prensa.

Boldrin, A., Andersen, J. K., Møller, J., Christensen, T. H., & Favoino, E. (2009). Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27(8), 800-812. doi:10.1177/0734242X09345275

Bot, A., & Benites, J. (2005). The Importance of Soil Organic Matter: Key to Drought-resistant Soil and Sustained Food Production. Rome, Italy: Food and Agriculture Organization of the United Nations.

Brown, M. E., & Chang, M. C. (2014). Exploring bacterial lignin degradation. Current opinion in chemical biology, 19, 1-7. doi:10.1016/j.cbpa.2013.11.015

BSI. (2011). PAS 100:2011. Specification for Composted Materials. London, UK.: British Standards Institution.

Campitelli, P., & Ceppi, S. (2008). Chemical, physical and biological compost and vermicompost characterization: A chemometric study. Chemometrics and Intelligent Laboratory Systems, 90(1), 64-71. doi:10.1016/j.chemolab.2007.08.001

Campo-Martínez, A., Acosta-Sanchez, R. L., Morales-Velasco, S., & Prado, F. A. (2014). Evaluación de microorganismos de montaña (mm) en la producción de acelga en la meseta de Popayán. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(1), 79-87.

Castro Barquero, L., Murillo Roos, M., Uribe Lorío, L., & Mata Chinchilla, R. (2015). Inoculación al suelo con Pseudomonas fluorescens, Azospirillum oryzae, Bacillus subtilis y microorganismos de montaña (mm) y su efecto sobre un sistema de rotación soya-tomate bajo condiciones de invernadero. Agronomía Costarricense, 39(3), 21-36.

Chatzistathis, T. (2014). cMicronutrient Deficiency in Soils and Plants. Sharjah, Emiratos Árabes Unidos: Bentham Science Publishers. doi:10.2174/97816080593481140101

Chesworth, W. (2007). Encyclopedia of Soil Science. Netherlands: Springer.

Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard Methods for the Examination of Water and Wastewater. 20th Edition. Wahington, DC, EEUU: APHA American Public Health Association

Diaz, L. F., De Bertoldi, M., & Bidlingmaier, W. (2011). Compost science and technology (Vol. 8). Netherlands: Elsevier.

FAO. (2013a). Climate Smart Agriculture Sourcebook. Rome: FAO.

FAO. (2013b). Manual de Compostaje del Agricultor. Santiago de Chile: FAO.

FAO. (2014). Building a common vision for sustainable food and agriculture: Principles and approaches. Rome: FAO.

Forte, M., Pera, A., De Bertoldi, M., & Zucconi, F. (1981). Evaluating Toxicity of Immature Compost. BioCycle, 22(2), 54.

Garcia, G. N., & Garcia, S. N. (2013). Química Agrícola Química del Suelo Y de Nutrientes Esenciales para las Plantas. Madrid, España: Mundi-Prensa Libros.

Garfield, F. M., Klesta, E., & Hirsh, J. (2000). Quality Assurance Principles for Analytical Laboratories (Vol. Third Edition). Gaithersburg, MD, USA: AOAC International.

Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143(Supplement C), 757-768.

Gissel-Nielsen, G., & Jensen, A. (2013). Plant Nutrition — Molecular Biology and Genetics: Proceedings of the Sixth International Symposium on Genetics and Molecular Biology of Plant Nutrition: Springer Netherlands.

Golabi, M. H., Denney, M., & Iyekar, C. (2007). Value of composted organic wastes as an alternative to synthetic fertilizers for soil quality improvement and increased yield. Compost science & utilization, 15(4), 267-271. doi:10.1080/1065657X.2007.10702343

Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333. doi:10.1038/nrg.2016.49

Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., . . . Mechichi, T. (2012). Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677-682. doi:10.1016/j.chemosphere.2012.03.053

Haug, R. T. (1993). The practical handbook of compost engineering. EEUU: CRC Press.

Helfrich, P., Chefetz, B., Hadar, Y., Chen, Y., & Schnabl, H. (1998). A novel method for determining phytotoxicity in composts. Compost science & utilization, 6(3), 6-13. doi: 10.1080/1065657X.1998.10701926

Hess, T. F., Grdzelishvili, I., Sheng, H., & Hovde, C. J. (2004). Heat inactivation of E. coli during manure composting. Compost science & utilization, 12(4), 314-322. doi: 10.1080/1065657X.2004.10702200

Hossain, M. A., Kamiya, T., Burritt, D. J., Tran, L. S. P., & Fujiwara, T. (2017). Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants. Netherlands: Elsevier Science.

Jenkinson, D., & Powlson, D. S. (1976). The effects of biocidal treatments on metabolism in soil—V: a method for measuring soil biomass. Soil biology and Biochemistry, 8(3), 209-213. doi:10.1016/0038-0717(76)90005-5

Joo, S. H., Monaco, F. D., Antmann, E., & Chorath, P. (2015). Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management. A review. Journal of environmental management, 158, 133-145.doi: 10.1016/j.jenvman.2015.05.014

Kalra, Y. P. (1998). Handbook of Reference Methods for Plant Analysis. Boston, EEUU: CRC Press.

Kass, D. C. L. (1998). Fertilidad de Suelos. San José, Costa Rica: EUNED

Kausar, H., Sariah, M., Saud, H. M., Alam, M. Z., & Ismail, M. R. (2010). Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. International Biodeterioration & Biodegradation, 64(7), 594-600. doi:10.1016/j.ibiod.2010.06.012

Kaye, J. P., & Hart, S. C. (1997). Competition for nitrogen between plants and soil microorganisms. Trends in Ecology & Evolution, 12(4), 139-143. doi:10.1016/S0169-5347(97)01001-X

Kinyua, M. N., Zhang, J., Camacho-Céspedes, F., Tejada-Martinez, A., & Ergas, S. J. (2016). Use of physical and biological process models to understand the performance of tubular anaerobic digesters. Biochemical Engineering Journal, 107, 35-44. doi:10.1016/j.bej.2015.11.017

Kirby, R. (2005). Actinomycetes and lignin degradation. Advances in applied microbiology, 58, 125-168. doi:10.1016/S0065-2164(05)58004-3

Kotschi, J. (2015). A Soiled reputation. Adverse impacts of mineral fertilizers in tropical agriculture. Germany: WWF Germany-Heinrich Böll Stiftung.

Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant Physiological Ecology. New York: Springer New York.

Lazcano, C., Martínez-Blanco, J., Christensen, T. H., Muñoz, P., Rieradevall, J., Møller, J., . . . & Nuñez, M. (2014). Environmental benefits of compost use on land through LCA–a review of the current gaps. Paper presented at the Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014), San Francisco, California, USA, 8-10 October, 2014.

Lea, P. J., & Morot-Gaudry, J. F. (2001). Plant Nitrogen. Berlin: Springer.

Lorch, H., Benckieser, G., & Ottow, J. (1995). Basic methods for counting microorganisms in soil and water. Methods in applied soil microbiology and biochemistry, 1995, 146-161.

Maheshwari, D. K. (2014). Composting for sustainable agriculture (Vol. 3): Springer. doi:10.1007/978-3-319-08004-8

Mantovi, P., Baldoni, G., & Toderi, G. (2005). Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water research, 39(2), 289-296. doi:10.1016/j.watres.2004.10.003

Medina Flores, C. M., Loza, T., & Augustín, J. (2014). Efecto de dosis y aplicaciones edáficas y foliar de microorganismos de montaña con y sin sales minerales en el rendimiento del cacao (Theobroma cacao l.) variedad criolla. Municipio San José de Bocay, Jinotega, febrero-mayo del 2014. (Ing. en Agroecología Tropical), Universidad Nacional Autónoma de Nicaragua, León Nicaragua.

Mingyan, Y., Xianlai, Z., & Xiaoqi, Z. (2011). Screening of complex thermophilic microbial community and application during municipal solid waste aerobic composting. African Journal of Biotechnology, 10(67), 15163-15169. doi:10.5897/AJB10.2559

Neset, T. S. S., & Cordell, D. (2012). Global phosphorus scarcity: identifying synergies for a sustainable future. Journal of the Science of Food and Agriculture, 97(1), 2-6. doi:10.1002/jsfa.4650

Parveen, A. A., & Padmaja, C. (2011). Efficacy of fungi and actinomycetes in converting municipal solid waste (MSW) and water hyacinth (WH) into organic manure. Research on crops, 12(1), 167-172.

Paulin, B., & O'Malley, P. (2008). Compost production and use in horticulture. Western Australia: Western Australia Agriculture Authority.

Petkova, G., & Kostov, O. (1996). Microbiological processes under vine-twig composting. Pochvoznanie, Agrokhimiia y Ekologiya, 31(5), 25-28.

Resendez, A. M. (2007). Elementos Nutritivos. Asimiliacion, Funciones, Toxicidad E Indisponibilidad En Los Suelos. Editorial Libros en Red.

Rodríguez, E., Gamboa, M., Hernández, F., & García, J. (2005). Bacteriología General: Manual de laboratorio. Universidad de Costa Rica. Facultad de Microbiología.

Saha, N., Mukherjee, D., Sen, S., Sarkar, A., Bhattacharaya, K., Mukhopadyay, N., & Patra, P. (2012). Application of highly efficient lignocellulolytic fungi in cocomposting of paddy straw amended poultry droppings for the production of humus rich compost. Compost science & utilization, 20(4), 239-244. doi:10.1080/1065657X.2012.10737054

Sciubba, L., Cavani, L., Negroni, A., Zanaroli, G., Fava, F., Ciavatta, C., & Marzadori, C. (2014). Changes in the functional properties of a sandy loam soil amended with biosolids at different application rates. Geoderma, 221, 40-49. doi:10.1016/j.geoderma.2014.01.018

Sreesai, S., Peapueng, P., Tippayamongkonkun, T., & Sthiannopkao, S. (2013). Assessment of a potential agricultural application of Bangkok-digested sewage sludge and finished compost products. Waste Management & Research, 31(9), 925-936.

Stoffella, P. J., & Kahn, B. A. (2001). Compost utilization in horticultural cropping systems. CRC press. doi:10.1201/9781420026221

Suchini Ramírez, J. G. (2012). Innovaciones agroecológicas para una producción agropecuaria sostenible en la región del Trifinio. Turrialba (Costa Rica): CATIE.

Tiquia, S., Tam, N., & Hodgkiss, I. (1996). Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environmental Pollution, 93(3), 249-256. doi:10.1016/S0269-7491(96)00052-8

US Composting Council. (2002). Test methods for the examination of composting and compost. Reston, Vermont, USA: US Composting Council.

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry, 19(6), 703-707. doi:10.1016/0038-0717(87)90052-6

Wang, & Keturi, P. H. (1990). Comparative seed germination tests using ten plant species for toxicity assessment of a metal engraving effluent sample. Water, Air, and Soil Pollution, 52(3-4), 369-376. doi:10.1016/j.biortech.2011.07.044

Wang, H.-y., Fan, B.-q., Hu, Q.-x., & Yin, Z.-w. (2011). Effect of inoculation with Penicillium expansum on the microbial community and maturity of compost. Bioresource technology, 102(24), 11189-11193. doi:10.1016/j.chemosphere.2006.12.067

Wei, Z., Xi, B., Zhao, Y., Wang, S., Liu, H., & Jiang, Y. (2007). Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid. Chemosphere, 68(2), 368-374.

Wollum, A. (1982). Cultural methods for soil microorganisms. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2, 781-802.

Zucconi, F., & de Bertoldi, M. (1987). Compost specifications for the production and characterization of compost from municipal solid waste. In Compost: production, quality and use (pp. 30-50). Netherlands: Elsevier.

Published

2018-09-21

How to Cite

Camacho Céspedes, F., Uribe Lorío, L., Newcomer, Q., Masters, K., & Kinyua, M. (2018). Bio-optimization of compost with cultures of mountain microorganisms (MM) and digested sludge from bio-digester (LDBIO). UNED Research Journal, 10(2), 330–341. https://doi.org/10.22458/urj.v10i2.2163

Issue

Section

Articles
Loading...