Genetic Structure of the ‘roble belloto’ Quercus skinneri (Fagaceae) in El Salvador
DOI:
https://doi.org/10.22458/urj.v17i1.5762Keywords:
genetic diversity, phylogeny, oak forests, genetic differentiationAbstract
Introduction: In El Salvador, Quercus skinneri Benth. is restricted to high-altitude temperate areas. The lack of genetic studies limits conservation decision-making, despite the importance of genetic diversity in these forests. Objective: To determine the genetic variability and structure of Q. skinneri populations in three localities of El Salvador. Methods: Samples were collected between July and December 2020. We assessed the genetic variability of the tree by collecting leaves from ten individuals per locality, and sequencing and analyzing a total of 19 individuals using two DNA barcode regions: a nuclear region (ITS2) and a plastid region (trnH-psbA). Based on aligned sequences, we calculated genetic diversity indices, population structure, isolation by distance, and phylogeny. Results: Genetic diversity was higher in ITS2 (π = 0.01576; Hd = 0,90643; h = 10) than in trnH-psbA (π = 0,00519; Hd = 0,48538; h = 3). Both regions showed populational structure, with the San Vicente Volcano population clearly differentiated (FST = 0,79972–1) from the others, as reflected in haplotype maps and phylogenetic trees. Conclusion: ITS2 and trnH-psbA differed in their ability to detect genetic variability in Q. skinneri. Both revealed populational structure, notably the differentiation of San Vicente Volcano, suggesting distinct genetic lineages. Introduction: In El Salvador, Quercus skinneri Benth. is restricted to high-altitude temperate areas. The lack of genetic studies limits conservation decision-making, despite the importance of genetic diversity in these forests. Objective: To determine the genetic variability and structure of Q. skinneri populations in three localities of El Salvador. Methods: Samples were collected between July and December 2020. We assessed the genetic variability of the tree by collecting leaves from ten individuals per locality, and sequencing and analyzing a total of 19 individuals using two DNA barcode regions: a nuclear region (ITS2) and a plastid region (trnH-psbA). Based on aligned sequences, we calculated genetic diversity indices, population structure, isolation by distance, and phylogeny. Results: Genetic diversity was higher in ITS2 (π = 0.01576; Hd = 0,90643; h = 10) than in trnH-psbA (π = 0,00519; Hd = 0,48538; h = 3). Both regions showed populational structure, with the San Vicente Volcano population clearly differentiated (FST = 0,79972–1) from the others, as reflected in haplotype maps and phylogenetic trees. Conclusion: ITS2 and trnH-psbA differed in their ability to detect genetic variability in Q. skinneri. Both revealed populational structure, notably the differentiation of San Vicente Volcano, suggesting distinct genetic lineages.
References
Ashley, M. V. (2021). Answers blowing in the wind: A quarter century of genetic studies of pollination in oaks. Forests, 12(5). https://doi.org/10.3390/f12050575
Aykut, Y. (2020). The importance in DNA barcoding of the regions which is covering rRNA genes and its sequences in the genus Quercus L. Bangladesh Journal of Plant Taxonomy, 27(2), 261–271. https://doi.org/10.3329/BJPT.V27I2.50666
Berendsohn, W. G., Gruber, A. K., & Monterrosa Salomón, J. (2009). Nova Silva Cuscatlanica. Árboles nativos e introducidos de El Salvador. Parte 1: Angiospermae – Familias A a L. BGBM.
Bolson, M., Smidt, E. de C., Brotto, M. L., & Silva-Pereira, V. (2015). ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. PLOS ONE, 10(12). https://doi.org/10.1371/journal.pone.0143049
Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., & Leon, C. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5(1). https://doi.org/10.1371/journal.pone.0008613
Dhivya, S., Ashutosh, S., Gowtham, I., Baskar, V., Harini, A. B., Mukunthakumar, S., & Sathishkumar, R. (2020). Molecular identification and evolutionary relationships between the subspecies of Musa by DNA barcodes. BMC genomics, 21(1), 659. https://doi.org/10.1186/S12864-020-07036-5
Durán Escalante, K. C., Ortiz Díaz, J. J., Pinzón Esquivel, J. P., & Gálvez Mariscal, M. A. (2023). Utilidad de los códigos de barras de DNA en la identificación de plantas melíferas asociadas a la miel monofloral de Sabal yapa producida en el este de Yucatán, México. https://doi.org/10.26461/26.01
Ersts, P. J. (s/f). Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Recuperado el 22 de febrero de 2025, de https://biodiversityinformatics.amnh.org/open_source/gdmg/index.html
Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8(3), 186–194. https://doi.org/10.1101/gr.8.3.186
Excoffier, L., Laval, G., & Schneider, S. (2017). Arlequin (version 3.0): An integrated software package for population genetics data analysis: https://doi.org/10.1177/117693430500100003
Feng, S., Jiang, M., Shi, Y., Jiao, K., Shen, C., Lu, J., Ying, Q., & Wang, H. (2016). Application of the ribosomal DNA ITS2 region of physalis (Solanaceae): DNA barcoding and phylogenetic study. Frontiers in Plant Science, 7(2016JULY), 1047. https://doi.org/10.3389/FPLS.2016.01047
Feng, S., Jiang, Y., Wang, S., Jiang, M., Chen, Z., Ying, Q., & Wang, H. (2015). Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study. International Journal of Molecular Sciences, 16(9), 21975–21988. https://doi.org/10.3390/ijms160921975
Fernández, J. F., Sork, V. L., Gallego, G., López, J., Bohorques, A., & Tohme, J. (2000). Cross-Amplification of Microsatellite Loci in a Neotropical Quercus Species and Standardization of DNA Extraction from Mature Leaves Dried in Silica Gel. Plant Molecular Biology Reporter, 18(4). https://doi.org/10.1007/BF02825070
Good, K., Coombes, A. J., Valencia-A, S., Rodríguez-Acosta, M., Bruns, E. B., & Alvarez-Clare, S. (2024). Análisis de Vacíos de Conservación de Especies Nativas de Encinos Mesoamericanos.
Gu, W., Song, J., Cao, Y., Sun, Q., Yao, H., Wu, Q., Chao, J., Zhou, J., Xue, W., & Duan, J. (2013). Application of the ITS2 Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta. PLoS ONE, 8(6). https://doi.org/10.1371/journal.pone.0067818
Hamilton. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular ecology, 8(3).
Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
Hipp, A. L., Manos, P. S., González-Rodríguez, A., Hahn, M., Kaproth, M., McVay, J. D., Avalos, S. V., & Cavender-Bares, J. (2018). Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist, 217(1), 439–452. https://doi.org/10.1111/NPH.14773
Hipp, A. L., Manos, P. S., Hahn, M., Avishai, M., Bodénès, C., Cavender-Bares, J., Crowl, A. A., Deng, M., Denk, T., Fitz-Gibbon, S., Gailing, O., González-Elizondo, M. S., González-Rodríguez, A., Grimm, G. W., Jiang, X. L., Kremer, A., Lesur, I., McVay, J. D., Plomion, C., … Valencia-Avalos, S. (2020). Genomic landscape of the global oak phylogeny. New Phytologist, 226(4), 1198–1212. https://doi.org/10.1111/NPH.16162
Hollingsworth, P. M. (2011). Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences, 108(49), 19451–19452. https://doi.org/10.1073/PNAS.1116812108
Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., Chase, M. W., Cowan, R. S., Erickson, D. L., Fazekas, A. J., Graham, S. W., James, K. E., Kim, K. J., John Kress, W., Schneider, H., van AlphenStahl, J., Barrett, S. C. H., van den Berg, C., Bogarin, D., … Little, D. P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12794–12797. https://doi.org/10.1073/PNAS.0905845106
Hvilsom, C., Segelbacher, G., Ekblom, R., Fischer, M. C., Laikre, L., Leus, K., O’Brien, D., Shaw, R., & Sork, V. (2022). Selecting species and populations for monitoring of genetic diversity. IUCN, International Union for Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2022.07.en
Jerome, D. (2020). Quercus skinneri. En IUCN Red List of Threatened Species 2020. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T32768A2823212.en
Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change and the option value of genetic diversity. Trends in Plant Science, 14(1), 51–58. https://doi.org/10.1016/J.TPLANTS.2008.10.002
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8369–8374. https://doi.org/10.1073/PNAS.0503123102
Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S., Tamura, K., & Ursula Battistuzzi, F. (2024). MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Molecular Biology and Evolution, 41(12), 1–9. https://doi.org/10.1093/MOLBEV/MSAE263
Lauer, W. (1954). Las formas de la vegetación de El Salvador (con 1 mapa). Comunicaciones, 3(1), 41–45.
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9). https://doi.org/10.1111/2041-210X.12410
Liu, H. Z., Takeichi, Y., Kamiya, K., & Harada, K. (2013). Phylogeography of Quercus phillyraeoides (Fagaceae) in Japan as revealed by chloroplast DNA variation. Journal of Forest Research, 18(4), 361–370. https://doi.org/10.1007/s10310-012-0357-y
Loera-Sánchez, M., Studer, B., & Kölliker, R. (2020). DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Research Notes, 13(1), 35. https://doi.org/10.1186/s13104-020-4897-5
Martins, K., Gugger, P. F., Llanderal-Mendoza, J., González-Rodríguez, A., Fitz-Gibbon, S. T., Zhao, J. L., Rodríguez-Correa, H., Oyama, K., & Sork, V. L. (2018). Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evolutionary Applications, 11(10), 1842–1858. https://doi.org/10.1111/EVA.12684
Ministerio de Medio Ambiente y Recursos Naturales. (2004). Plan de manejo área natural Los Volcanes.
Morales-Saldaña, S., Valencia-Ávalos, S., Oyama, K., Tovar-Sánchez, E., Hipp, A. L., & González-Rodríguez, A. (2022). Even more oak species in Mexico? Genetic structure and morphological differentiation support the presence of at least two specific entities within Quercus laeta. JSE Journal of Systematics and Evolution. https://doi.org/10.1111/jse.12818
Okaura, T., Nguyen, D. Q., Ubukata, M., & Harada, K. (2007). Phylogeographic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast DNA variation. Genes and Genetic Systems, 82(6), 465–477. https://doi.org/10.1266/ggs.82.465
Ortego, J., Bonal, R., Muñoz, A., & Espelta, J. M. (2015). Living on the edge: The role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak. Plant Biology, 17(3), 676–683. https://doi.org/10.1111/plb.12272
Pacheco-Reyes, F. C., Wei, L., Pérez-Rodríguez, M. Á., Pacheco-Reyes, F. C., Wei, L., & Pérez-Rodríguez, M. Á. (2021). Análisis filogenético de especies de Quercus L. utilizando tres códigos de barras de ADN. Ecosistemas y recursos agropecuarios, 8(2). https://doi.org/10.19136/ERA.A8N2.2831
Pang, X., Song, J., Zhu, Y., Xu, H., Huang, L., & Chen, S. (2011). Applying plant DNA barcodes for Rosaceae species identification. Cladistics, 27(2), 165–170. https://doi.org/10.1111/J.1096-0031.2010.00328.X
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/BIOINFORMATICS/BTS460
Qin, Y., Li, M., Cao, Y., Gao, Y., & Zhang, W. (2017). Molecular thresholds of ITS2 and their implications for molecular evolution and species identification in seed plants. Scientific Reports 2017 7:1, 7(1), 1–8. https://doi.org/10.1038/s41598-017-17695-2
Rodríguez-Acosta, M., & Coombes, A. J. (2020). Manual para la propagación de Quercus: Una guía fácil y rápida para cultivar encinos en México y América Central. 79.
Romero Rangel, S. (2006). Revisión taxonómica del complejo Acutifoliae de Quercus (fagaceae) con énfasis en su representación en México. Acta Botanica Mexicana, 76, 1–45.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/MOLBEV/MSX248
Simeone, M. C., Piredda, R., Papini, A., Vessella, F., & Schirone, B. (2013). Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): Problems, prospects and phylogenetic implications. Botanical Journal of the Linnean Society, 172(4), 478–499. https://doi.org/10.1111/boj.12059
Sokołowska, J., Fuchs, H., & Celiński, K. (2022). Assessment of ITS2 Region Relevance for Taxa Discrimination and Phylogenetic Inference among Pinaceae. Plants (Basel, Switzerland), 11(8). https://doi.org/10.3390/PLANTS11081078
Valencia-A., S. (2017). Diversidad del género Quercus (Fagaceae) en México. Botanical Sciences, 75, 33. https://doi.org/10.17129/BOTSCI.1692
Valencia-Cuevas, L., Piñero, D., Mussali-Galante, P., Valencia-Ávalos, S., & Tovar-Sánchez, E. (2014). Effect of a red oak species gradient on genetic structure and diversity of Quercus Castanea (Fagaceae) in Mexico. Tree Genetics & Genomes, 10(3), 641–652. https://doi.org/10.1007/s11295-014-0710-8
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. En PCR Protocols. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
Xie, J., Chen, Y., Cai, G., Cai, R., Hu, Z., & Wang, H. (2023). Tree Visualization by One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research, 51(W1). https://doi.org/10.1093/nar/gkad359
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.


