Cytogenics, morphology and viability of Borreria spinosa (Rubiaceae) pollen grains

Cytogenics, morphology and viability of Borreria spinosa (Rubiaceae) pollen grains

Authors

  • Paola Belen Pereyra Universidad Nacional de Santiago del Estero, Facultad de Agronomía y Agroindustrias, Instituto para el desarrollo agropecuario del semiárido (INDEAS). Av. Belgrano Sur 1912, Santiago del Estero, Argentina https://orcid.org/0000-0001-6208-7875
  • Valeria de los Angeles Páez Instituto de Genética y Microbiología, Fundación Miguel Lillo, Miguel Lillo 251, Tucumán, Argentina https://orcid.org/0000-0002-3213-3890
  • Aldo Rubén Andrada Instituto de Genética y Microbiología, Fundación Miguel Lillo, Miguel Lillo 251, Tucumán, Argentina https://orcid.org/0000-0002-3520-1406
  • Maria Laura Espeche Instituto de Taxonomía Fanerogámica y Palinología, Fundación Miguel Lillo, Miguel Lillo 251, Tucumán, Argentina https://orcid.org/0000-0002-4599-3128
  • Diego Ariel Meloni Universidad Nacional de Santiago del Estero, Facultad de Agronomía y Agroindustrias, Instituto para el desarrollo agropecuario del semiárido (INDEAS). Av. Belgrano Sur 1912, Santiago del Estero, Argentina https://orcid.org/0000-0001-9869-3455

DOI:

https://doi.org/10.22458/urj.v16i1.5254

Keywords:

Cytomixis, karyotype, microsporogenesis, pollen morphology, weeds, palynology

Abstract

Introduction: Borreria spinosa is a herbaceous plant considered a weed in agricultural crops, although it also has potential in apiculture. Despite its agronomic importance, its cytogenetic and palynological traits are poorly known. Objective: To do the cytogenetic characterization of B. spinosa, describe the morphology of its pollen grains, and estimate their potential viability. Methods: We collected plant material in Santiago del Estero, Argentina, in May 2017 and used classical methods (8-hydroxyquinoline and Farmer for mitosis and meiosis; viability with Müntzing; pollen morphology with nonacetolysed and acetolysed techniques, and SEM). Results: B. spinosa has a chromosome number of 2n = 56, with a karyotype of 46 m + 10 sm. Meiotic abnormalities mainly include chromosomes outside the equatorial plate, lagging chromosomes, and cytomixis. Pollen grains are small to medium-sized, suboblate to oblate-spheroidal, with a viability of 70%. This is a tetraploid species, most chromosomes are metacentric or submetacentric; and it has irregular meiotic behavior and cytomixis, with concomitant low viability in pollen grains. Conclusion: In B. spinose, pollen grains have similar characteristics to other species of the genus Borreria.

References

The Angiosperm Phylogeny Group, Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV, Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

Bataglia, E. (1955). Chromosome morphology and terminology. Caryologia, 3(1), 179-187. https://doi.org/10.1080/00087114.1955.10797556

Daviña, J. R., & Cabral, E. L. (1991). Recuentos cromosomicos en Galianthe (Rubiaceae). Boletin de la Sociedad Argentina de Botánica, 27(3-4), 250-252.

de Borges, R. L. B., De Jesús, M. C., De Camargo, R. C. R., & Dos Santos, F. D. A. (2020). Pollen types in honey produced in caatinga vegetation. Brazilian Palynology, 44(3), 405–418. https://doi.org/10.1080/01916122.2019.1617208

Dutra, F., Bellonzi, T. K., Souza, C. N. de, & Gasparino, E. C. (2020). Pollen morphology of rubiaceae from cerrado forest fragments: pollen unit, polarity and diversity of the types of apertures. Review of Palaeobotany and Palynology, 282, 1-17. https://doi.org/10.1016/j.revpalbo.2020.104297

Erdtman, G. (1952). Pollen morphology and plant taxonomy. Angiosperms. An introduction to palynology. Stockholm, Almquist Wiksell.

Erdtman, G. (1960). The Acetolysis method, a revised description. Svensk Botanisk Tids Krift, 54(4), 561-464.

Faegri, K., & Iversen, J. (1966). Text book of pollen analysis. Scandinavian Universitly boods.

Goldblatt, P., & Johnson, D. E. (1990). Index to plant chromosome numbers 1986–1987. Monographs in: systematic botany, 30, 1–243.

Gonçalves-Esteves, V., Vieira, G. R. M., Carvalh, R. J. P., Crespo, S. R. M., & Mendonça, C. B. F. (2020). Pollen morphology of some species of Spermacoceaes. s. (Rubiaceae) of the Atalantic Forest, Río de Janeiro, Brazil. Acta Botanica Brasílica, 34(2), 243-255. https://doi.org/10.1590/0102-33062019abb0286

Felismino, M. F. (2015). Meiotic behavior and chromosome number of Urochloa adspersa (Trin.) R. D. Webster from the Brazilian Chaco. Genetics and Molecular Research, 614(3), 7455-7462. https://doi.org/10.4238/2015.July.3.21

Landi, M. A., Di Bella, C. M., Bravo, S. J., & Belliset, L. (2021). Structural resistance and functional resilience of the Chaco forest to wildland fires: an approach with MODIS time series. Austral Ecology, 46(2), 277-289. https://doi.org/10.1111/aec.12977

Levan, A., Fredga, K., & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52(2), 201-220. https://doi.org/10.1111/j.1601-5223.1964.tb01953

Luna, I. M., & Druetta, M. (2018). Eficacia en el control de Borreria spinosa (L.) de herbicidas desecantes y su interacción con el momento de aplicación la mezcla con fluroxypir. 2º Congreso Argentino de Malezas, p. 73-77.

Mandal, G. D., & Nandi, A. K. (2017). Cytomixis with associated chromosomal anomalies and the reproduction of Chlorophytum borivilianum Santa pau & RR Fern. Taiwania, 62(2), 211-215.

Marcos, J. V., Nava, R., Cristóbal, G., Redondo, R., Escalante-Ramírez, B., Bueno, G., Déniz, O., González-Porto, A., Pardo, C., Chung, F., & Rodríguez, T. (2015). Automated pollen identification using microscopic imaging and texture analysis. Micron, 68, 36-46. https://doi.org/10.1016/j.micron.2014.09.002

Maryam, A., Jaskani, J., Bilques, F., Salman Haider, M., Summar Abbas Naqvi, S. A., Nafees M., Rashid, A., & Iqrar, A. K. (2015). Evaluation of pollen viability in date palm cultivars under different storage temperatures. Pakistan Journal of Botany, 47(1), 377-381. https://www.researchgate.net/publication/272831705

Miguel, L. M., Sobrado, S. V., & Cabral, E. L. (2022). Aportes para la Flora de Argentina: lectotipificaciones, nuevos sinónimos y registros en Borreria (Rubiaceae). Darwiniana, Nueva Serie, 10(2), 404–416. https://doi.org/10.14522/darwiniana.2022.102.1053

Mursalimov, S., Sidorchuk, Yu., Baiborodin, S., & Deineko, E. (2014). Distribution of telomeres in the tobacco meiotic nuclei during cytomixis. Cell Biology International, 39(4), 491-495. https://doi.org/10.1002/cbin.10406

Mursalimov, S., & Deineko, E. (2017). Cytomixis in tobacco microsporogenesis: are there any genome parts predisposed to migration? Protoplasma, 254(3), 1379-1384. https://doi.org/10.1007/s00709-016-1028-1

Nepomuceno, F. Á. A., Bezerra de Souza, E., Vasconcelos Nepomuceno, I., Miguel, L. M., Cabral, E. L., & Bezerra Loiola, M. I. (2018). O gênero Borreria (Spermacoceae, Rubiaceae) no estado do Ceará, Brasil. Rodriguésia, 69(2), 715–731. https://doi.org/10.1590/2175-7860201869232

Punt, W., Blackmore S., Nilsson S., & Le Thomas, A. (1994). Glossary of Pollen and Spore Terminology. LPP Foundation, University of Utrecht.

Reeves, A. (2001). MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome, 44(3), 439-443. http://dx.doi.org/10.1139/gen-44-3-439

Romero, C. (1986). A new method for estimating karyotype asymmetry. Taxon, 35(3), 531-536. https://doi.org/10.2307/1221906

Salgado, C. R., Pieszko, G., & Tellería, M. C. (2014). Aporte de la melisopalinología al conocimiento de la flora melífera de un sector de la Provincia Fitogeográfica Chaqueña, Argentina. Boletín de la Sociedad Argentina de Botánica, 39(4) 513-524. https://doi.org/10.31055/1851.2372.v49.n4.9889

Scandaliaris, M., Oses, D., Willington, E., Cisternas, P., Melano, F., Rhiner, E., & Sosa, E. (2020). Relevamiento fenológico de la flora con potencial apícola del campo de la Facultad de Ciencias Agropecuarias (FCA-UNC). Nexo Agropecuario, 8(1), 71-78.

Selvaraj, R. (1987). Karyomorphological studies in south Indian Rubiaceae. Cytologia, 52, 343-356.

Shamina, N. V., Dorogova, N. V, Seriukova, E. G., & Solkova, O. G. (2003). Dynamics of cytoskeleton microtubules in higher plant meiosis. II. Perinuclear band formation. Tsitologiia, 45(7), 655-660.

Sidorchuk, Y. V., & Deineko, E. V. (2014). Deformation of nuclei and abnormal spindles assembly in the second male meiosis of polyploid tobacco plants. Cell Biology International, 38(4), 472-9. https://doi.org/10.1002/cbin.10222

Silva, M. F. B., & Novais, J. S. (2020). Melissopalynological characterization of honeys from the Discovery Coast, Brazil. Palynology, 44(3), 539–550. https://doi.org/10.1080/01916122.2019.1631897

Thangavel, G., Hofstatter, P. G., Mercier, R., & Marques, A. (2023). Tracing the evolution of the plant meiotic molecular machinery. Plant Reproduction, 36(1), 73-95. https://doi.org/10.1007/s00497-022-00456-1

Wang, C., Qu, S., Zhang, J., Fu, M., Chen, X., & Liang, W. (2023). OsPRD2 is essential for double-strand break formation, but not spindle assembly during rice meiosis. Frontiers in Plant Science, 13, 1-15. https://doi.org/10.3389/fpls.2022.1122202

Wodehouse, R. P. (1935). Pollen grains. McGraw-Hill Book Company.

Zuloaga, F., Belgrano, M. J., & Zanotti, C. A. (2019). Actualización del catálogo de las plantas vasculares del Cono Sur. Darwiniana, Nueva Serie, 7(2), 208-278. http://dx.doi.org/10.14522/darwiniana.2019.72.861

Published

2024-08-01

How to Cite

Pereyra, P. B., Páez, V. de los A., Andrada, A. R., Espeche, M. L., & Meloni, D. A. (2024). Cytogenics, morphology and viability of Borreria spinosa (Rubiaceae) pollen grains. UNED Research Journal, 16(1), e5254. https://doi.org/10.22458/urj.v16i1.5254

Issue

Section

Articles
Loading...