Electroactive microorganisms in coffee processing wastewater (iron redox processes)
DOI:
https://doi.org/10.22458/urj.v16i1.4806Keywords:
microbial fuel cell, electrogenic, bacteria, wastewater, iron reductionAbstract
Introduction: Wastewater is often a good source for electrogenic bacteria, which are essential for Microbial Fuel Cells (MFCs). The electrons they release while metabolizing organic matter is evidence of their electrogenic capacity. Objective: To evaluate the iron-reducing capacity of bacteria isolated from coffee wastewater. Methods: We isolated morphologically distinct facultative bacteria from the anode electrode of MFCs, with coffee mill wastewater as our substrate. We did a preliminary identification with the Biolog GEN III system (Biolog Inc. Hayward, CA, USA). To assess the conversion of iron (III) to iron (II) by the isolated bacteria, we tested iron (III) citrate, iron (III) chloride, and iron (III) oxide. For comparison, we used S. oneidensis as a positive control in our experiments. Results: We identified eight bacterial isolates with a predominance of non-sporulated Gram positive bacilli morphology. They have reductive activity of iron compounds, giving the best conversion percentages from a for iron oxide (III). The isolate coinciding with the genus Citrobacter (SB), the only Gram negative bacillus, obtained iron conversion percentages higher than 1,0% in the three iron compounds (maximum: 4,3%). Conclusion: In the residual water from the coffee process, there are bacteria with electrogenic capability that could be used in Microbial Fuel Cells.
References
Arbianti, R., Utami, T. S., Hermansyah, H., Novitasari, D., Kristin, E., & Trisnawati, I. (2013). Performance Optimization of Microbial Fuel Cell (MFC) Using Lactobacillus bulgaricus. MAKARA Journal of Technology, 17(1), 32–38. https://doi.org/10.7454/mst.v17i1.1925
Banerjee, S., Paul, S., Nguyen, L. T., Chu, B. C. H., & Vogel, H. J. (2016). FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics, 8(1), 125–133. https://doi.org/10.1039/C5MT00218D
Beblawy, S., Bursac, T., Paquete, C., Louro, R., Clarke, T. A., & Gescher, J. (2018). Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Molecular Microbiology, 109(5), 571–583. https://doi.org/10.1111/mmi.14067
Bennett, B. D., Brutinel, E. D., & Gralnick, J. A. (2015). A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 81(22), 7938–7944. https://doi.org/10.1128/AEM.02835-15
Breuer, M., Rosso, K. M., Blumberger, J., & Butt, J. N. (2015). Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. Journal of The Royal Society Interface, 12(102), 20141117. https://doi.org/10.1098/rsif.2014.1117
Cárdenas, D., Villegas, J. R., Solís, C., Sanabria-Chinchilla, J., Uribe, L., & Fuentes-Schweizer, P. (2022). Evaluación del desempeño de una celda de combustible microbiana con electrodo de grafito modificado para el tratamiento de agua residula del procesamiento de café. Revista Colombiana de Química 51(1), 40–47. https://doi.org/10.15446/rev.colomb.quim.v51n1.101185
Castro, J. (2019). Búsqueda de bacterias electrogénicas en celdas de combustible microbiano a partir de miel de café. [Tesis de Licenciatura, Universidad de Costa Rica]. http://repositorio.sibdi.ucr.ac.cr:8080/xmlui/handle/123456789/6438
Coursolle, D., & Gralnick, J. A. (2010). Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Molecular Microbiology, 77(4), 995-1008. https://doi.org/10.1111/j.1365-2958.2010.07266.x
Darmawan, M. D., Hawa, L. C., & Argo, B. D. (2018). Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate. IOP Conference Series: Earth and Environmental Science, 131, 012047. https://doi.org/10.1088/1755-1315/131/1/012047
Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78(5), 873–880. https://doi.org/10.1007/s00253-008-1360-2
Fennessey, C. M., Jones, M. E., Taillefert, M., & DiChristina, T. J. (2010). Siderophores Are Not Involved in Fe(III) Solubilization during Anaerobic Fe(III) Respiration by Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 76(8), 2425–2432. https://doi.org/10.1128/AEM.03066-09
Fukushima, T., Sia, A. K., Allred, B. E., Nichiporuk, R., Zhou, Z., Andersen, U. N., & Raymond, K. N. (2012). Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer. Proceedings of the National Academy of Sciences, 109(42), 16829–16834. https://doi.org/10.1073/pnas.1210131109
Ganzorig, B., Zayabaatar, E., Pham, M. T., Marito, S., Huang, C.-M., & Lee, Y.-H. (2023). Lactobacillus plantarum Generate Electricity through Flavin Mononucleotide-Mediated Extracellular Electron Transfer to Upregulate Epithelial Type I Collagen Expression and Thereby Promote Microbial Adhesion to Intestine. Biomedicines, 11(3), 677. https://doi.org/10.3390/biomedicines11030677
Gautier-Luneau, I., Merle, C., Phanon, D., Lebrun, C., Biaso, F., Serratrice, G., & Pierre, J.-L. (2005). New Trends in the Chemistry of Iron(III) Citrate Complexes: Correlations between X-ray Structures and Solution Species Probed by Electrospray Mass Spectrometry and Kinetics of Iron Uptake from Citrate by Iron Chelators. Chemistry - A European Journal, 11(7), 2207–2219. https://doi.org/10.1002/chem.200401087
Gildemyn, S., Rozendal, R. A., & Rabaey, K. (2017). A Gibbs Free Energy-Based Assessment of Microbial Electrocatalysis. Trends in Biotechnology, 35(5), 393–406. https://doi.org/10.1016/j.tibtech.2017.02.005
Gu, J.-D. (2003). Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation, 52(2), 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4
Gude, V. G. (2016). Wastewater treatment in microbial fuel cells - An overview. Journal of Cleaner Production, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022
Ha, P. T., Lee, T. K., Rittmann, B. E., Park, J., & Chang, I. S. (2012). Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell. Environmental Science and Technology, 46(5), 3022–3030. https://doi.org/10.1021/es203861v
Hong, Y.-G., & Gu, J.-D. (2010). Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Applied Microbiology and Biotechnology, 88(3), 637–643. https://doi.org/10.1007/s00253-010-2820-z
Kirchhofer, N. D., Rengert, Z. D., Dahlquist, F. W., Nguyen, T. Q., & Bazan, G. C. (2017). A Ferrocene-Based Conjugated Oligoelectrolyte Catalyzes Bacterial Electrode Respiration. Chem, 2(2), 240–257. https://doi.org/10.1016/j.chempr.2017.01.001
Liu, T., Luo, X., Wu, Y., Reinfelder, J. R., Yuan, X., Li, X., Chen, D., & Li, F. (2020). Extracellular electron shuttling eediated by soluble c -Type Cytochromes produced by Shewanella oneidensis MR-1. Environmental Science & Technology, 54(17), 10577–10587. https://doi.org/10.1021/acs.est.9b06868
Liu, X., Shi, L., & Gu, J-D. (2018). Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnology Advances, 36(7), 1815–1827. https://doi.org/10.1016/j.biotechadv.2018.07.001
Nastro, R. A., Falcucci, G., Toscanesi, M., Minutillo, M., Pasquale, V., Trifuoggi, M., Dumontet, S., & Jannelli, E. (2015). Performances and microbiology of a microbial fuel cell (MFC) fed with the organic fraction of municipal solid waste (OFMSW). Proceedings of the 6th European Fuel Cell - Piero Lunghi Conference, EFC 2015, November.
Obileke, K., Onyeaka, H., Meyer, E. L., & Nwokolo, N. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
Pankratova, G., Hederstedt, L., & Gorton, L. (2019). Extracellular electron transfer features of Gram-positive bacteria. Analytica Chimica Acta, 1076, 32–47. https://doi.org/10.1016/j.aca.2019.05.007
Patil, S. A., Surakasi, V. P., Koul, S., Ijmulwar, S., Vivek, A., Shouche, Y. S., & Kapadnis, B. P. (2009). Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresource Technology, 100(21), 5132–5139. https://doi.org/10.1016/j.biortech.2009.05.041
Persson, I. (2018). Ferric Chloride Complexes in Aqueous Solution: An EXAFS Study. Journal of Solution Chemistry, 47(5), 797–805. https://doi.org/10.1007/s10953-018-0756-6
Rosenbaum, M. A., & Henrich, A. W. (2014). Engineering microbial electrocatalysis for chemical and fuel production. Current Opinion in Biotechnology, 29, 93–98. https://doi.org/10.1016/j.copbio.2014.03.003
Sánchez-Santillán, P., & Cobos-Peralta, M. A. (2016). Producción in vitro de ácidos grasos volátiles de bacterias celulolíticas reactivadas y bacterias ruminales totales en sustratos celulósicos. Agrociencia, 50(5), 565–574. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952016000500565&lng=es&tlng=es.
Smirnov, P. R., & Grechin, O. V. (2019). Structure of the nearest surrounding of ions in aqueous solutions of iron(III) chloride by x-ray diffraction method. Journal of Molecular Liquids, 281, 385–388. https://doi.org/10.1016/j.molliq.2019.02.099
Tahernia, M., Plotkin-Kaye, E., Mohammadifar, M., Gao, Y., Oefelein, M. R., Cook, L. C., & Choi, S. (2020). Characterization of Electrogenic Gut Bacteria. ACS Omega, 5(45), 29439–29446. https://doi.org/10.1021/acsomega.0c04362
Thapa, B. Sen, Kim, T., Pandit, S., Song, Y. E., Afsharian, Y. P., Rahimnejad, M., Kim, J. R., & Oh, S.-E. (2022). Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. Bioresource Technology, 347, 126579. https://doi.org/10.1016/j.biortech.2021.126579
Vilas, J., Oliveira, V. B., Marcon, L. R. C., Simões, M., & Pinto, A. M. F. R. (2019). Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: Influence of design and operating parameters. Science of The Total Environment, 648, 263–270. https://doi.org/10.1016/j.scitotenv.2018.08.061
Villegas, J. R. (2020). Uso de Celdas de Combustible Microbiano con cátodo al aire para el tratamiento del agua residual del procesamiento de café. [Tesis de Licenciatura, Universidad de Costa Rica]. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/17317
Viviano, F., Medina, L., Ramos, N., Amaíz, L., & Valbuena, O. (2011). Degradación de celulosa por bacterias de aguas termales de Las Trincheras, Venezuela. Revista Latinoamericana de Biotegnologia Ambiental y Algal, 2(1), 18–29. http://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/25
Vukosav, P., Mlakar, M., & Tomišić, V. (2012). Revision of iron(III)–citrate speciation in aqueous solution. Voltammetric and spectrophotometric studies. Analytica Chimica Acta, 745, 85–91. https://doi.org/10.1016/j.aca.2012.07.036
Wen, Q., Wu, Y., Cao, D., Zhao, L., & Sun, Q. (2009). Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource Technology, 100(18), 4171–4175. https://doi.org/10.1016/j.biortech.2009.02.058
Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007
Yin, Y., Liu, C., Zhao, G., & Chen, Y. (2022). Versatile mechanisms and enhanced strategies of pollutants removal mediated by Shewanella oneidensis: A review. Journal of Hazardous Materials, 440, 129703. https://doi.org/10.1016/j.jhazmat.2022.129703
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.