Nanocellulose production from pineapple leaves and palm oil rachis

Nanocellulose production from pineapple leaves and palm oil rachis




biomass, nanomaterials, technology, valuation, wastes


Introduction: Nanocellulose, the nanometer form of cellulose, can be produced through various methods, including chemical treatments, physical rupture, or their combination. Agro-industrial waste, like palm oil rachis and pineapple leaves, is commonly used as fuel or composting in plantations. However, it is not typically used for value-added products. Objective: To produce cellulose nanofibers starting with low-energy and low-input systems. Methods: We chemically characterized pineapple leaves and African palm oil rachis and subjected them to chemical degradation and mechanical treatments, to obtain cellulose nanofibers. The fibers were subsequently degraded with acetic acid (HOAc) and characterized using visible microscopy, fluorescence microscopy, infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. Results: Pineapple leaves and African palm oil rachis had cellulose contents of 35,8 ± 0,5% and 17,9 ± 0,1%, respectively. We obtained nanofibers with thicknesses of 40nm and 10,8nm. Conclusion: The hybrid method of chemical treatment and mechanical rupture proved successful in obtaining fibrillar nanocellulose with low-concentration reagents.


Alawar, A., Hamed, A. M., & Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite. Composites: Part B: Engineering, 40(7), 601–606.

Ahmed, B., Bezazi, A., Bourchak, M., Scarpa, F., & Zhu, C. (2014). Thermochemical and statistical mechanical properties of natural sisal fibres. Composites: Part B: Engineering, 67, 481–489.

Amroune, S., Bezazi, A., Belaadi, A., Zhu, C., Scarpa, F., Rahatekar, S., & Imad, A. (2014). Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Composites Part A. Applied Science and Manufacturing, 71, 98-106.

Bendahou, A., Dufresne, A., Kaddami, H., & Habibi, Y. (2007). Isolation and structural characterization of hemicelluloses from palm of Pheonix dactylifera L. Carbohydrate Polymers, 68(3), 601–608.

Bezazi, A., Belaadi, A., Bourchak, M., Scarpa, F., & Boba, K. (2014). Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Composites: Part B: Engineering, 66, 194–203.

Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725.

Csiszar, E., Kalic, P., Kobol, A., & Ferreira, E. de P. (2016). The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrasonics Sonochemistry, 31, 473–480.

Dopico-Ramírez, D., García-García, L., Abril-González, A., Hernández-Corvo, Y., & Cordero-Fernández, D. (2012). Lignina de bagazo como fibra dietética. ICIDCA., 46(1), 46-50.

Fahma, F., Iwamoto, S., Hori, N., Iwata, T., & Takemura, A. (2010). Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose, 17, 977–985.

Fahma, F., Hori, N., & Iwata, T. Takemura, A. (2017). PVA nanocomposites reinforced with cellulose nanofibers. Emirates Journal of Food and Agriculture, 29(5), 323–329.

Galiwango, E., Abdel, N. S., Al-Marzouqi, A. H., Abu-Omar, M. M., & Khaleel, A. A. (2018). Klason method: an effective method for isolation of lignin fractions from date palm biomass waste. Chemical and Process Engineering Research, 57, 46–58.

Galiwango, E., Abdel, N., Al-Marzouqi, H. A., Abu-Omar, M. M., & Khaleel, A. A. (2019). Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon, 5, e02937.

Ichwan, M., Onyianta, A. J., Trask, R. S., Etale, A., & Eichhorn, S. J. (2023). Production and characterization of cellulose nanocrystals of different allomorphs from oil palm empty fruit bunches for enhancing composite interlaminar fracture toughness. Carbohydrate Polymer Technologies and Applications, 5, 100272.

Irías, A., & Lutz, G. (2014). Composición química de la biomasa residual de la planta de piña variedad MD2 proveniente de Guácimo, Limón. Ciencia y Tecnología, 30(2), 27–34.

Jiang, F., & Hsieh, Y-L. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 95(1), 32-40.

Jirón, E., Rodríguez, K., & Bernal, C. (2020). Cellulose Nanofiber Production from Banana Rachis. International Journal of Engineering Science and Computing, 10(2), 24683-24689.

Jirón-García, E. G., Rodríguez-Mora, K., & Bernal-Samaniego, C. (2022). Obtención de nanocelulosa a partir de raquis de palma africana y bagazo de caña. Revista Tecnología En Marcha, 35(2), 167-181.

Jirón, E., & Rodríguez, K. (2022). Funcionalización de nanocelulosa de raquis de palma como adsorbente de cationes metálicos del agua. InterSedes, 23(48), 208-227.

Kalia, S., Boufi, S., Celli, A., & Kango, S. (2014). Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 292, 5-31.

Khiari, R., Dridi-Dhaouadi, S., Aguir, C., & Mhenni, M. F. (2010a). Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. Journal of Environmental Sciences, 22(10), 1539–1543.

Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010b). Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775–780.

Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735-764.

Liu, D., Han, G., Huang, J., & Zhang, Y. (2009). Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers, 75(1), 39–43.

Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J. M., & Torre, L. (2016). Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from Posidonia oceanica Leaves. Journal of Renewable Materials, 4(3), 190–198.

López-Herrera, M., WingChing-Jones, R., & Rojas-Bourrillón, A. (2014). Meta-análisis de los subproductos de piña (Ananas comosus) para la alimentación animal. Agronomía Mesoamerica, 25(2), 383-392.

López, M., WingChing-Jones, R., & Rojas-Bourrillón, A. (2009). Características fermentativas y nutricionales del ensilaje de rastrojo de piña (Ananas comosus). Agronomía Costarricense, 33(1), 1–15.

Maache, M., Bezazi, A., Amroune, S., Scarpa, F., & Dufresne, A. (2017). Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers, 171, 163–172.

Maneeintr, K., Leewisuttikul, T., Kerdsuk, S., & Charinpanitkul, T. (2018). Hydrothermal and enzymatic treatments of pineapple waste for energy production. Energy Procedia, 152, 1260-1265.

Mora, S., Quesada, R., Jaén, L., & Monge, D. (2020). Boletín Estadístico Agropecuario N°30, Serie cronológica 2016-2019.

Picado, P. (2018). UCR fomenta buenas prácticas agrícolas entre productores de piña.

Ravindran, L., Sreekala, M. S., & Thomas, S. (2010). Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships. International Journal of Biological Macromolecules, 131, 858–870.

Rigg-Aguilar, P., Moya, R., Oporto-Velásquez, G. S., Vega-Baudrit, J., Starbird, R., Puente-Urbina, A., Méndez, D., Potosme, L. D., & Esquivel, M. (2020). Micro-and Nanofibrillated Cellulose (MNFC) from Pineapple (Ananas comosus) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives. Journal of Nanomaterials, 2020, 1393160.

Rodriguez-Gacio, M. del C., Iglesias-Fernández, R., Carbonero, P., & Matilla, A. J. (2012). Softening-up mannan-rich cell walls. Journal of Experimental Botany, 63(11), 3975–3988.

Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., &. Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers, 92(2), 1928–1933.

Scheller, H., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289.

Shaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842.

Sharma, U. (1981). Investigations on the fibers of pineapple [Ananas comosus (L). Merr.] leaves. Carbohydrate Research, 97(2), 323-329.

Siqueira, G., Bras, J., & Dufresne, A. (2010). Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers, 2(4), 728-765.

Sun, R., Tomkinson, J., Sun, X. F., & Wang., N. (2000). Fractional isolation and physico-chemical characterization of alkali-soluble lignins from fast-growing poplar wood. Polymer, 41(23), 8409-8417.

Vargas, J., & Rodríguez, K. (2021). Funcionalización de nanocelulosa a partir de rastrojo de piña y raquis de palma africana. Científica, 25(2), 1–19.

Xiong, J., Li, Q., Shi, Z., & Ye, J. (2017). Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Research International, 100, 858–863.

Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans Regia L.) Shell Agricultural Waste. Polymers, 11(7), 1130.



How to Cite

Vargas Mesén, J., Rodríguez Mora, K., Jirón García, E., & Bernal Samaniego, C. (2023). Nanocellulose production from pineapple leaves and palm oil rachis. UNED Research Journal, 15(2), e4593.