In vitro life table of the storage mite Tyrophagus putrescentiae (Acari: Acaridae)
DOI:
https://doi.org/10.22458/urj.v15i1.4335Keywords:
Biological parameters, life table, in vitro plants, laboratory conditions, culture pest controlAbstract
Introduction: The mite Tyrophagus putrescentiae is a common contaminant of stored products and an important pest in plant tissue culture laboratories, because they diseminate fungi and bacteria. Objective: To describe the reproduction and life table of T. putrescentiae in vitro. Methods: We reared the mites with its associated fungus Leptosphaerulina sp., recording growth and development every 12h. Results: The duration of the egg, larva, protonymph, and tritonymph stages of cohort 1 was 4,52; 1,57; 1,37 and 1,29 days (cohort 2: 4,54; 1,44; 1,31 and 1,45 days, respectively). Cohort 1 periods of pre-oviposition, oviposition and post-oviposition were 1,86; 7,21 and 1,35 days (most cohort 2 individuals did not reach maturity). The intrinsic rate of natural increase (rm) was 0,11 individuals per female per day, the net reproduction rate (Ro) was 29,21; the generation time was 29,47 days, and the finite rate of increase (λ) was 1,12 times per female per day. Conclusion: Under the typical laboratory conditions, T. putrescentiae can multiply its initial population in a single day, which explains the population explosions observed in these laboratories.
References
Abdel-Sater, M. A., Hemida, S. K., & Eraky, S. A. (1995). Distribution of fungi on two mite species and their habitats in Egypt. Folia Microbiologica, 40, 304-313. https://doi.org/10.1007/BF02814214
Abou-Setta, M. M., Sorrell, R. W., & Childers, C. C. (1986). Life 48: A basic computer program to calculate life table parameters for an insect or mite species. Florida Entomologist, 69(4), 690-697. https://doi.org/10.2307/3495215
Aygun, O., Yaman, M., & Durmaz, H. (2007). A survey on occurrence of Tyrophagus putrescentiae (Acari: Acaridae) in Surk, a traditional Turkish dairy product. Journal of Food Engineering, 78(3), 878-881. https://doi.org/10.1016/j.jfoodeng.2005.11.029
Bahrami, F., Kamali, K., & Fathipour Y. (2007). Life history and population growth parameters of Tyrophagus putrescentiae (Acari: Acaridae) on Fusarium graminearum in laboratory conditions. Journal of Entomological Society of Iran, 26(2), 7-18.
Bellows, T. S., Van Driesche, R. G., & Elkinton, J. S. (1992). Life table construction and analysis in the evaluation of natural enemies. Annual Review of Entomology, 37, 587-614. https://doi.org/10.1146/annurev.en.37.010192.003103
Birch, L.C. (1948). The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17(1), 15-26. https://doi.org/10.2307/1605
Canfield, M. S., & Wrenn, W. J. (2010). Tyrophagus putrescentiae mites grown in dog food cultures and the effect mould growth has on mite survival and reproduction. Veterinary Dermatology, 21(1), 58-63. https://doi.org/10.1111/j.1365-3164.2009.00778.x
Cassells, A. C. (2000). Aseptic microhydroponics: a strategy to advance microplant development and improve microplant physiology. Acta Horticulturae, 530, 187-194. https://doi.org/10.17660/ActaHortic.2000.530.21
Conger, B. V. (2018). Cloning agricultural plants via in vitro techniques. CRC Press Taylor & Francis Group.
da Silva, G.L., Esswein, I. Z., de Souza Radaelli, T. F., Rocha, M. S., Ferla, N., & da Silva, O. S. (2018). Influence of various diets on development, life table parameters and choice oviposition test of Tyrophagus putrescentiae (Acari: Acaridae): An illustration using scanning electron microscopy (SEM). Journal of Stored Products Research, 76, 77-84. https://doi.org/10.1016/j.jspr.2018.01.006
Duek, L., Kaufman, G., Palevsky E., & Berdicevsky I. (2001). Mites in fungal cultures. Mycoses, 44(9-10), 390-394. https://doi.org/10.1046/j.1439-0507.2001.00684.x
Eaton, M., & Kells, S. A. (2011). Freeze mortality characteristics of the mould mite Tyrophagus putrescentiae, a significant pest of stored products. Journal of Economic Entomology, 104(4), 1423-1429. https://doi.org/10.1603/EC10429
Emmanouel, N. G., Buchelos, C. T., & Dukidis, E. (1994). A survey on the mites of stored grain in Greece. Journal of Stored Product Research, 30(2), 175-178. https://doi.org/10.1016/0022-474X(94)90196-1
Erban, T., Rybanska, D., & Hubert, J. (2015). Population growth of the generalist mite Tyrophagus putrescentiae (Acari: Acaridida) following adaptation to high- or low-fat and high- or low-protein diets and the effect of dietary switch. Environmental Entomology, 44(6), 1599-1604. https://doi.org/10.1093/ee/nvv129
Erban, T., Klimov, P.B., Smrz, J., Phillips, T. W., Nesvorna, M., Kopecky, J., & Hubert, J. (2016). Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Frontiers Microbiology, 7, 1046. https://doi.org/10.3389/fmicb.2016.01046
Fan, Q-H. & Zhang, Z-Q. (2007a). Tyrophagus (Acari: Astigmata: Acaridae) Fauna of New Zealand. Manaaki Whenua Press. https://doi.org/10.7931/J2/FNZ.56
Fan, Q-H. & Zhang, Z-Q. (2007b). Revision of some species of Tyrophagus (Acari: Acaridae) in Oudemans Collection. Systematic and Applied Acarology, 12, 253-280. https://doi.org/10.11158/saa.12.3.11
Gerson, H., Capua, S., & Thorens D. (1984). Life history and life tables of Rhizoglyphus robini Claparède (Acari: Astigmata: Acaridae). Acarologia, 24(4), 439-448. https://bit.ly/3WTr8Be
Hughes, A. M. (1976). The mites of Stored Food and Houses (2nd ed.). Her Majesty´s Stationary Office.
Kasuga, S., & Amano, H. (2000). Influence of temperature on the life history parameters of Tyrophagus similis Volgin (Acari: Acaridae). Applied Entomology Zoology, 35(2), 237-244. https://doi.org/10.1303/aez.2000.237
Kheradmand, K., Kamali, K., Fathipour, Y., & Mohammadi-Goltapeh E. (2007). Development, life table and thermal requirement of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushrooms. Journal of Stored Products Research, 43, 276-281. https://doi.org/10.1016/j.jspr.2006.06.007
Leifert, C., Ritchie, J., & Waites, W. M. (1991). Contaminants of plant tissue and cell cultures. World Journal of Microbiology and Biotechnology, 7, 452-469. https://bit.ly/3wOnUUT
Murillo-Rojas, P., & Aguilar-Piedra, H. (2021). Principales ácaros encontrados en laboratorios comerciales de cultivo de tejidos vegetales y su asociación con hongos en el Valle Central de Costa Rica. Agronomía Costarricense, 45(1), 41-52. https://doi.org/10.15517/RAC.V45I1.45679
Murillo, P., Arias, J., & Aguilar, H. (2021). First record and verification of Tyrophagus putrescentiae (Acari: Acaridae) causing direct damage on anthurium plants cultivated in vitro. Systematic and Applied Acarology, 26(11), 2048–2058. https://doi.org/10.11158/saa.26.11.5
OConnor, B. M. (2009). Cohort Astigmatina.. In G.W. Krantz & D.E. Walter (Eds). A manual of Acarology (3rd Ed., pp.565-657). Texas Tech University press.
Odutayo, O. I., Amusa, N. A., Okutade O. O., & Ogunsanwo Y. R. (2007). Sources of microbial contamination in tissue culture laboratories in southwestern Nigeria. African Journal of Agricultural Research, 2(3), 67-72.
Parkinson, C. L., Jamieson, N., Eborall, J., & Armitage, D. M. (1991). Comparison of the fecundity of three species of grain store mites on fungal diets. Experimental and Applied Acarology, 12, 297-302. https://doi.org/10.1007/BF01193474
Rojas, E. (1992). Bionomics of three species of fungivorous mites (Acari), Tarsonemus sp. (Prostigmata: Tarsonemidae), Tyrophagus putrescentiae (Schrank), Caloglyphus sp. (Astigmata: Acaridae) and their natural enemy, Lasioceius sp. (Mesostigmata: Ascidae). [Master Thesis, Texas A & M University, USA].
Rybanska, D., Hubert, J., Markovic, M., & Erban T. (2016). Dry dog food integrity and mite strain influence the density-dependent growth of the stored-product mite Tyrophagus putrescentiae (Acari: Acaridida). Journal of Economic Entomology, 109(1),454–460. https://doi.org/10.1093/jee/tov298
Sánchez-Ramos, I., & Castañera P. (2005). Effect of temperature on reproductive parameters and longevity of Tyrophagus putrescentiae (Acari: Acaridae) Experimental and Applied Acarology, 36, 93-105. https://doi.org/10.1007/s10493-005-0506-5
Sánchez-Ramos, I., & Castañera, P. (2007). Effect of temperature on reproductive parameters and longevity of Acarus farris (Acari: Acaridae). Journal of Stored Products Research, 43(4), 578-586. https://doi.org/10.1016/j.jspr.2007.03.008
Sánchez-Ramos, I., Álvarez-Alfageme, F., & Castañera, P. (2007). Effects of relative humidity on development, fecundity and survival of three storage mites. Experimental and Applied Acarology, 41, 87-100. https://doi.org/10.1007/s10493-007-9052-7
Smrž, J. (2003). Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Experimental and Applied Acarology, 31, 105-113. https://doi.org/10.1023/b:appa.0000005111.05959.d6
StatSoft Inc. (2001). Statistica for Windows. Version 6. USA.
Tanigoshi, L. K., & McMurtry, J. A. (1977). The dynamics of predation of Stethorus picipes (Coleoptera: Coccinellidae) and Typhlodromus floridanus on the prey Oligonychus punicae (Acarina: Phytoseiidae, Tetranychidae). Part I. Comparative life history and life table studies. Hilgardia, 45(8), 237-261. https://doi.org/10.3733/hilg.v45n08p237
van Epenhuijsen, C. W., & Koolaard J. (2004). Effective aerosol treatment of mould mites and onion thrips in tissue culture. New Zealand Plant Protection, 57, 202-208. https://doi.org/10.30843/nzpp.2004.57.6911
Villalobos, V. M., & Thorpe T. A. (1991). Micropropagación: concepto, metodología y resultados. In W. M. Roca & L. A. Mroginski (Eds), Cultivo de Tejidos en la Agricultura: fundamentos y aplicaciones (pp.127-142). CIA Tropical.
Xia, B., Dongmei, L., Zhiwen, Z., & Zhimin Z. (2009). Effect of temperature on the life cycle of Aleuroglyphus ovatus (Acari: Acaridae) at four constant temperatures. Journal of Stored Products Research, 45, 190-194. https://doi.org/10.1016/j.jspr.2009.02.001
Ždárková, E., & Voráček V. (1993). The effect of physical factors on survival of stored food mites. Experimental and Applied Acarology, 17, 197–204. https://doi.org/10.1007/BF00118436
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UNED Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.