APIR: methodology for risk assessment and prioritization in HACCP plans

APIR: methodology for risk assessment and prioritization in HACCP plans

Authors

DOI:

https://doi.org/10.22458/urj.v14i1.3882

Keywords:

Foodborne Diseases, risk-based prioritization, HACCP, risk analysis, food hazards.

Abstract

Introduction: A prioritization methodology based on bottom-up risks is proposed for different hazards and food matrices. The variables of the model are subdivided into two categories: a) the characteristics of the hazard, where the probability of occurrence and severity are quantified. (b) the properties of the food matrix which estimate its epidemiological risk, presence in the food and vulnerability of its manufacture. A Risk Index (IR) is established as a parameter to facilitate food safety managers to discriminate and prioritize Significant Hazards during the hazard identification of HACCP plans. Objective: The aim of this work was to establish a flexible and dynamic methodology of prioritization based on risk for processing and processing companies of animal products intended for human consumption and integrate it with HACCP plans, allowing specific controls to be established in the production process. Results: The significance values between the clusters Nrp and Nrm were p<0,05. The Spearman Correlation Coefficient (rho) was estimated to determine the proportion of variation between the same predictors. The results obtained were Or-Nrp (rho= 0,719, p= <0,001), Se-Nrp (rho= 0,888, p-valor= <0,001), Re-Nrm (rho= 0,560, p-valor= <0,001), Pm-Nrm (rho= 0,696, p-valor= <0,001) y Vd (rho= 0,687, p-valor= <0,001), respectively. A case study is included to simulate the model and demonstrate its operability. Discussion: The results obtained demonstrate the replicability and validity of this model. The name APIR (Prioritization analysis based on Risk Index) is proposed for this methodology.

References

Agencia Chilena de Inocuidad Alimentaria (ACHIPIA) (2018). Guía para el diseño, desarrollo e implementación del Sistema de Análisis de Peligros y de Puntos Críticos de Control en establecimientos de alimentos HACCP. https://www.achipia.gob.cl/wp-content/uploads/2018/08/Manual-HACCP.pdf

Akoglu, H. (2018). User's Guide to Correlation Coefficients. Turkish Journal of Emergency Medicine, 18(3), 91-93. https://doi.org/10.1016/j.tjem.2018.08.001

Angelos, J., Arens, A., Johnson, H., Cadriel, J., & Osburn, B. (2017). One Health in food safety and security education: Subject matter outline for a curricular framework. One Health, 3, 56-65. https://doi.org/10.1016/j.onehlt.2017.04.001

Artusi, R., Verderio, P., & Marubini, E. (2002). Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers, 17(2), 148-151. https://journals.sagepub.com/doi/pdf/10.1177/172460080201700213

Bosch, A., Gkogka, E., Le Guyader, F. S., Loisy-Hamon, F., Lee, A., van Lieshout, L., Marthi, B., Myrmel, M., Sansom, A., Schultz, A., Winkler, A., Zuber, S., & Phister, T. (2018). Foodborne viruses: Detection, risk assessment, and control options in food processing. International Journal of Food Microbiology, 285, 110-128. https://doi.org/10.1016/j.ijfoodmicro.2018.06.001.

Centro para el Control de Enfermedades (CDC). (2004). Diagnosis and Management of Foodborne Illnesses: A Primer for Physicians and Other Health Care Professionals, 53(RR-4). https://bit.ly/3yEyct1

Chaves, C., & Arias, M. (2009). Caracterización de cepas de Listeria monocytogenes realizados a partir de queso fresco proveniente de diferentes zonas productoras costarricenses. Archivos Latinoamericanos de Nutrición, 59(1), 66-70.

Decreto Ejecutivo N°4142 (2018). Reglamento Técnico Centroamericano (RTCA 67.04.50:17), Alimentos. Criterios Microbiológicos para la Inocuidad de los Alimentos. Diario Oficial La Gaceta N°238, Alcance 222. Del 21 de diciembre de 2018. https://bit.ly/3ld4S4R

de Freitas Costa, E., Cardoso, M., Kich, J.D., & Corbellini, L.G. (2020). A qualitative risk assessment approach to microbial foodborne hazards in Brazilian intensive pork production: A step towards risk prioritization. Microbial Risk Analysis, 15, 100105. https://doi.org/10.1016/j.mran.2020.100105

Domínguez-Lara, S. (2018). Magnitud del efecto para pruebas de normalidad en investigación en salud. Investigación en Educación Médica, 7(27), 92-93. http://dx.doi.org/10.22201/facmed.20075057e.2018.27.1776

Fernández, S., Marcía, J., Bu, J., Baca, Y., Chavez, V., Montoya, H., Valera, I., Ruiz, J., Lagos, S., & Ore, F. (2021). Enfermedades transmitidas por Alimentos (Etas); Una Alerta para el consumidor. Ciencia Latina Revista Científica Multidisciplinar, 5(2), 2284-2298. https://doi.org/10.37811/cl_rcm.v5i2.433

González, L., Martínez, F., Rossi, L., Tornese, M., & Troncoso, A. (2010). Enfermedades transmitidas por los alimentos: Análisis del riesgo microbiológico. Revista Chilena de Infectología, 27(6), 513-24. http://dx.doi.org/10.4067/S0716-10182010000700004

Guyomard, H., Manceron, S., & Peyraud, J-L. (2013). Trade in feed grains, animals, and animal products: Current trends, future prospects, and main issues. Animal Frontiers, 3(1), 14-18, https://doi.org/10.2527/af.2013-0003

Hernández, M., & Medina, A. (2014). La calidad en el sistema agroalimentario globalizado. Revista Mexicana de Sociología, 76(4), 557-582.

Huertas, A. (2020). Contextualización del concepto de inocuidad en el concepto de seguridad alimentaria y nutricional. Alimentos Hoy, 27(48), 27-50.

Karshima, N.S. (2013). The roles of veterinarians in the safety of foods of animal origin in Nigeria: A Review. Journal of Animal Production Advances, 3(3), 57-68. https://doi.org/10.5455/japa.20130330124409

Lee, H., & Yoon, Y. (2021). Etiological agents implicated in foodborne illness worldwide. Food Science of Animal Resources, 41(1), 1-7. https://doi.org/10.5851/kosfa.2020.e75

Li, Y., Liang, G., Zhang, L., Liu, Z., Yang, D., Li, J., Guijo, S., & Zhou, P. (2021). Development and application of a comparative risk assessment method for ranking chemical hazards in food. Food Additives & Contaminants: Part A, 38(1), 1-14. https://doi.org/10.1080/19440049.2020.1828627

Lindqvist, R., Langerholc, T., Ranta, J., Hirvonen, T., & Sand, S. (2020). A common approach for ranking of microbiological and chemical hazards in foods based on risk assessment-useful but is it possible? Critical Reviews in Food Science and Nutrition, 60(20), 3461-3474. https://doi.org/10.1080/10408398.2019.1693957

Liu, F., Rhim, H., Park, K., Xu, J., & Lo, C.K. (2021). HACCP certification in food industry: Trade-offs in product safety and firm performance. International Journal of Production Economics, 231, 107838. https://doi.org/10.1016/j.ijpe.2020.107838

Liuzzo, G., Bentley, S., Giacometti, F., Piva, S., & Serranio, A. (2018). Food safety objectives, criteria, ranking and hierarchization. Italian Journal of Food Safety, 7(4), 7395. https://doi.org/10.4081/ijfs.2018.7395

López-Calvo, R., Víquez-Barrantes, D., & Araya-Arce, T. (2021). Incorporación de proteína de suero dulce en un yogur batido bajo en grasa. Agronomía Mesoamericana, 32(3), 949-962. https://doi.org/10.15517/am.v32i3.42883

Márquez-Araque, A.T. (2021). Sistemas pecuarios. Notas sobre inocuidad alimentaria, desarrollo sostenible y cambio climático. Agroindustria, Sociedad y Ambiente, 1(16), 56-70.

Martínez, R.M., Tuya, L.C., Martínez, M., Pérez, A., & Cánovas, A.M. (2009). El coeficiente de correlación de los rangos de Spearman caracterización. Revista Habanera de Ciencias Médicas, 8(2), 15-26.

Mureşan, C.C., Marc, R.A.V., Jimborean, M., Rusu, I., Mureşan, A., Nistor, A., Cozma, A., & Suharoschi, R. (2020). Food Safety System (HACCP) as Quality Checkpoints in a Spin-Off Small-Scale Yogurt Processing Plant. Sustainability, 12(22), 9472. https://doi.org/10.3390/su12229472

Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). (2020). FAO guide to ranking food safety risks at the national level. Food Safety and Quality series No 10. Rome. https://doi.org/10.4060/cb0887en

Organización Mundial de la Salud (OMS). (2015). WHO estimates of the global burden of foodborne diseases. https://bit.ly/3LeQZh1

Soto, Z., Pérez, L., & Estrada, D. (2016). Bacterias 0causantes de enfermedades transmitidas por alimentos: una mirada en Colombia. Revista Salud Uninorte, 32(1), 105-122, https://dx.doi.org/10.14482/sun.32.1.8598

Thomson, G., Penrith, M., Atkinson, M., Thalwitzer, S., Mancuso, A., Atkinson, S., & Osofsky, S. (2013). International Trade Standards for Commodities and Products Derived from Animals: The Need for a System that Integrates Food Safety and Animal Disease Risk Management. Transboundary and Emerging Diseases, 60(6), 507–515. https://doi.org/10.1111/tbed.12164

van Asselt, E.D., Noordam, M.Y., Pikkemaat, M.G., & Dorgelo, F.O. (2018). Risk-based monitoring of chemical substances in food: Prioritization by decision trees. Food Control, 93, 112-20. https://doi.org/10.1016/j.foodcont.2018.06.001

van der Fels-Klerx, H.J., van Asselt, E.D., Raley, M., Poulsen, M., Korsgaard, H., Bredsdorff, L., Nauta, M., D'agostino, M., Coles, D., Martin, H., & Frewer, L. (2018). Critical review of methods for risk ranking of food-related hazards, based on risks for human health. Critical Reviews in Food Science and Nutrition, 58(2), 178-193. https://doi.org/10.1080/10408398.2016.1141165

Vargas-Hernández, G., Durán-Quirós, A., González-Lutz, M. I., & Mora-Acedo, D. (2015). Perfil de riesgos de contaminación microbiológica y química en la cadena de producción de nueve productos hortícolas para consumo fresco, de un grupo de empresas agrícolas del Valle Central de Costa Rica. Agronomía Costarricense, 39(2), 105-120. https://doi.org/10.15517/rac.v39i2.21779

Published

2022-06-05

How to Cite

Cartín-Rojas , A. ., Cediel Becerra, N. ., & Monroy López, F. . (2022). APIR: methodology for risk assessment and prioritization in HACCP plans. UNED Research Journal, 14(1), e3882. https://doi.org/10.22458/urj.v14i1.3882

Issue

Section

Special Article
Loading...