Chemical composition and biological properties in Mentha spicata under conventional and organic fertilization
PDF
HTML
EPUB

Keywords

carvone
polyphenols
antioxidant activity
medicinal plants
vermicompost

How to Cite

MeloniD. A., Bezerra da SilvaJ. A., BordónA., LescanoJ. A., & BeltránR. E. (2021). Chemical composition and biological properties in Mentha spicata under conventional and organic fertilization. UNED Research Journal, 13(2), e3692. https://doi.org/10.22458/urj.v13i2.3692

Abstract

Introduction: Spearmint (Mentha spicata) is widely used in the pharmaceutical and food industries, thanks to chemical properties largely influenced by genetic and environmental factors, especially soil conditions. Objective: To determine the effect of conventional and organic fertilization on the chemical and biological properties of M. spicata. Methods: We conducted field trials in a randomized block experimental design, with four replications, using unfertilized crops and crops fertilized with urea (0,15 t ha-1) or vermicompost (5 and 10 t ha-1). Results: All fertilization treatments increased essential oil yield, carvone content, and total polyphenol concentration with respect to the control. They also increased the antioxidant capacity and the inhibitory activity of the acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glycosidase enzymes. The effect was more marked in the crop fertilized with 5 t ha-1 vermicompost. Conclusions: Both conventional and organic fertilization increase the yield and quality of M. spicata essential oils. However, organic fertilization with 5 t ha-1 vermicompost yields rich total polyphenols and carvone. This improves antioxidant and medicinal properties, acting on enzymes related to Alzheimer's disease and diabetes.
https://doi.org/10.22458/urj.v13i2.3692
PDF
HTML
EPUB

References

Aissi, O., Boussaid, M., & Messaoud, C. (2016). Essential oil composition in natural populations of Pistacia lentiscus L. from Tunisia: Effect of ecological factors and incidence on antioxidant and antiacetylcholinesterase activities. Industrial Crops and Products, 91, 56–65. DOI:10.1016/j.indcrop.2016.06.025

Asami, D.K., Hong, Y.J., Barrett, D. M., & Mitchell, A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241. DOI:10.1021/jf020635c

Benabdallah, A., Boumendjel, M., Aissi, O., Rahmoune, C., Boussaid, M., & Messaoud, C. (2018). Chemical composition, antioxidant activity and acetylcholinesterase inhibitory of wild Mentha species from northeastern Algeria. South African Journal of Botany, 116, 131-138. DOI:10.1016/j.sajb.2018.03.002

Carvalho, C.C.C.R., & Fonseca, M.M.R. (2006). Carvone: why and how should one bother to produce this terpene. Food Chemistry 95(3), 413–422. DOI:10.1016/j.foodchem.2005.01.003

Ćavar Zeljković, S., Šišková, J., Komzáková, K., De Diego, N., Kaffková, K., & Tarkowski, P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants, 10, 550-568. DOI:10.3390/plants10030550

Chauhan, R.S., Kaul, M.K., Shahi, A.K., Kumar, A., Ram, G., & Tawa, A. (2009). Chemical composition of essential oils in Mentha spicata L. accession [IIIM(J)26] from North-West Himalayan region, India. Industrial Crops and Products, 29(2-3), 654–657. DOI:10.1016/j.indcrop.2008.12.003

Chrysargyris, A., Xylia, P., Botsaris, G., & Tzortzakis, N. (2017). Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Industrial Crops and Products, 103, 202-212. DOI:10.1016/j.indcrop.2017.04.010

Churilova, E.V., & Midmore, D.J. (2019). Vermiliquer (Vermicompost Leachate) as a complete liquid fertilizer for hydroponically-grown pak choi (Brassica chinensis L.) in the tropics. Horticulturae, 5(1), 26-48. DOI:10.3390/horticulturae5010026

Garcia-Mier, L., Meneses, R.A.E., Jimenez, G.S.N., Mercado, L.A, García T.J.F., Contreras, M.L.M., & Feregrino, P.A.A. (2021). Polyphenol content and antioxidant activity of stevia and peppermint as a result of organic and conventional fertilization. Journal of Food Quality, 2021, 1-6. DOI:10.1155/2021/6620446

Gülçin, I., Taslimi, P., Aygün, A., Sadeghian, N., Bastem, E., Küfrevioglu, Ö.I., Turkan, F., & Sen, F. (2018). Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International Journal of Biological Macromolecules 119, 741–746. DOI:10.1016/j.ijbiomac.2018.08.001

Gülçin, I., Gören A.C., Taslimi, P., Alwasel, S.H., Kılıc, O., & Bursal, F. (2020). Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. Biocatalysis and Agricultural Biotechnology, 23, 1-10. DOI:10.1016/j.bcab.2019.101441.

Hanc, A., Boucek, J., Svehla, P., Dreslova, M., & Tlustos, P. (2017). Properties of vermicompost aqueous extracts prepared under different conditions. Environmental Technology, 38(11), 1428–1434. DOI:10.1080/09593330.2016.1231225

Kara, N. (2015). Yield, quality, and growing degree days of anise (Pimpinella anisum L.) under different agronomic practices. Turkish Journal of Agriculture and Forestry, 39, 1014–1022. DOI:10.3906/tar-1411-143

Keshavarz, H., Modarres-Sanavy, S.A.M., & Afra, M.M. (2018). Organic and chemical fertilizer affected yield and essential oil of two mint species. Journal of Essential Oil Bearing Plants, 21(6), 1674-1681. DOI:10.1080/0972060X.2018.1497545

Kokkini, S., Karousou, R., & Lanaras, T. (1995). Essential oils of spearmint (carvone-rich) plants from the island of Crete (Greece). Biochemical Systematics and Ecology, 23, 42-430. DOI:10.1016/0305-1978(95)00021-L

Kumar, P., Mishra, S., Malik, A., & Satya, S. (2011). Insecticidal properties of Mentha species: a review. Industrial Crops and Products. 34, 802–817. DOI:10.1016/j.indcrop.2011.02.019

Loera-Muro, A., Troyo-Diéguez, E., Murillo-Amador, B., Barraza, A., Caamal-Chan, G., Lucero-Vega, G., & Nieto-Garibay, A. (2021). Effects of vermicompost leachate versus inorganic fertilizer on morphology and microbial traits in the early development growth stage in mint (Mentha spicata L.) and rosemary (Rosmarinus officinalis L.) plants under closed hydroponic system. Horticulturae, 7(5), 100-115. DOI:10.3390/horticulturae7050100

Pathma, J., & Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus, 1, 26-45. DOI:10.1186/2193-1801-1-26

Ram, M., Ram, D., & Singh, S. (1995). Irrigation and nitrogen requirements of Bergamotmint on a sandy loam soil under sub-tropical conditions. Agricultural Water Management, 27(1), 45–54. DOI:10.1016/0378-3774(95)91231-U

Ramnarain, Y.I., Ansari, A.A., & Ori, L. (2019). Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. International Journal of Recycling of Organic Waste in Agriculture, 8, 23-36. DOI:10.1007/s40093-018-0225-7

Rekha, G.S., Kaleena, P.K., Elumalai, D., Srikumaran, M.P., & Maheswari, V.N. (2018). Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. International Journal of Recycling Organic Waste in Agriculture, 7: 83-88. DOI:10.1007/s4009 3-017-0191-5

Rezai, M., Bayrak, Ç., Taslimi, P., Gülçin, I., & Menzek, A. (2018). The first synthesis, antioxidant and anticholinergic activities of 1-(4,5-dihydroxybenzyl)pyrrolidin-2-one derivative bromophenols including natural products. Turkish Journal Chemistry, 42(3), 808-825

Riachi, L.G., & De Maria, A.B. (2015). Peppermint antioxidants revisited. Food Chemistry, 176, 72-81. DOI:10.1016/j.foodchem.2014.12.028

Şarer, E., Toprak, S.Y., Otlu, B., & Durmaz, R. (2011). Composition and antimicrobial activity of the essential oil from Mentha spicata L subsp. spicata. Journal of Essential Oil Research, 23(1), 106-108. DOI:10.1080/10412905.2011.9700435

Scherer, R., Lemos, M.F., Lemos, M.F., Martinelli, G.C., Martins, J.D.L., & da Silva, A.G. (2013). Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.). Industrial Crops and Products, 50, 408–413. DOI:10.1016/j.indcrop.2013.07.007

Singh, P., Misra, A., & Srivastava, N. (2001). Influence of Mn deficiency on growth, chlorophyll content, physiology, and essential monoterpene oil(s) in genotypes of spearmint (Mentha Spicata L.). Photosynthetica, 39, 473-476. DOI:10.1023/A:1015107116205

Tao, Y., Zhang, Y., Cheng, Y., & Wang, Y. (2013). Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomedical Chromatography, 27(2), 148-155. DOI:10.1002/bmc.2761

Wang, L.M., Zhang, Y.M., Lian, J.J., Chao, J.Y., Gao, Y.X., Yang, F., & Zhang, L.Y. (2013). Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresourse Technology, 136, 281-287. DOI:10.1016/j.biortech.2013.03.039

Xiao, Z., Storms, R., & Tsang, A. (2006). A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Biochemistry, 351(1), 146-148. DOI:10.1016/j.ab.2006.01.036

Yakoubi, R., Megateli, S., Sadok, T.A., Bensouici, C., & Bağci, E. (2021). A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. Biocatalysis and Agricultural Biotechnology, 31, 3-17. DOI:10.1016/j.bcab.2020.101891

Yi, W., & Wetzstein, H.Y. (2011). Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects. Journal of the Science of Food and Agriculture, 91,1849–1854. DOI:10.1002/jsfa.4394

Yigit, B., Kaya, R., Taslimi, P., Isık, Y., Karaman, M., Yigit, M., Özdemir, I., & Gülçin, I. (2019). Imidazolinium chloride salts bearing wing tip groups: synthesis, molecular docking and metabolic enzymes inhibition. Journal of Molecular Structure, 1179, 709–718. DOI:10.1016/j.molstruc.2018.11.038

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.