Potential water recharge areas in the micro-basins of Cachí district, Cartago, Costa Rica
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Water resource
aquifer
land use

How to Cite

Álvarez Jiménez, M., Ramírez Granados, P., Castro Solís, J., & Solís Torres, L. (2021). Potential water recharge areas in the micro-basins of Cachí district, Cartago, Costa Rica. UNED Research Journal, 13(2), e3683. https://doi.org/10.22458/urj.v13i2.3683

Abstract

Introduction: Precipitation is the most important source in water recharge zones and to ensure its availability and management it is important to evaluate changes in land use. Objective: To determine the potential water recharge areas in six Cartago micro-basins. Methods: We determined hydrogeological units through gauges, and physical and hydraulic properties on the field. We used topographic curves to generate a digital elevation model and longitudinal profiles. Additionally, we produced a land-use change map and determined soil water balance. Results: The area presents good hydrogeological conditions in terms of springs, pinpointing the hydraulic connection of the units, and the soil favors water recharge in the upper parts. Above, where the springs are located, half of the land has forest cover, facilitating infiltration. The rest sustains agricultural activities (39% in the middle and lower parts of the basins). Forest areas present lower potential recharge values (approx. <611.4mm) than areas of crops and pasture (792.32-796.29mm). Conclusion: The site presents good hydrogeological conditions and areas of crops and pasture have higher potential recharge values than forests.
https://doi.org/10.22458/urj.v13i2.3683
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Achu, A., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. doi.org/10.1016/j.gsd.2020.100365

Acuña R. (1 de febrero de 2008). Sistema Nacional de Información Territorial. Curvas de nivel cada 10 metros 1:5000 Costa Rica. Recuperado el 20 de mayo del 2021 https://www.snitcr.go.cr/Metadatos/full_metadata2?k=Y2FwYTo6SUdOXzU6OmN1cnZhc181MDAw.

Acuña R. (14 de mayo de 2014). Sistema Nacional de Información Territorial. Cauce y Drenaje a escala 1:25000 Costa Rica. Recuperado el 20 de mayo del 2021 https://www.snitcr.go.cr/Metadatos/full_metadata2?k=Y2FwYTo6SUdOXzI1OjpjYXVjZWRyZW5hamVfMjVr

Assouline, S. (2006). Modeling the relationship between soil bulk density and the water retention curve. Vadose Zone Journal, 5, 554-563. https://doi.org/10.2136/vzj2005.0083

Bras, R. (1990). Hydrology: An Introduction to Hydrologic Science. Massachusetts: Addison-Wesley.

Chicas, A., Vanegas, E., & García. N. (2014). Determinación indirecta de la capacidad de retención de humedad en suelos de la subcuenca del río Torjá, Chiquimula, Guatemala. Revista Ciencias Técnicas Agropecuarias, 23(1), 41–46.

Cortés Granados, V. (2008). Discrepancias entre uso actual y potencial de las laderas del Valle de Orosi. Revista Reflexiones, 87(2). Recuperado de https://revistas.ucr.ac.cr/index.php/reflexiones/article/view/11498

Dressler, M. (2009). Art of Surface Interpolation. Praga, Technical University of Liberec.

Hack, J. (1957). Studies of Longitudinal Stream Profiles in Virginia and Maryland. Washington, US Government Printing Office. https://doi.org/10.3133/pp294B

Hall, B., Currell, M., & Webb, J. (2020). Using multiple lines of evidence to map groundwater recharge in a rapidly urbanising catchment: Implications for future land and water management. Journal of Hydrology, 580, 124265. https://doi.org/10.1016/j.jhydrol.2019.124265

Harden, C. P., & Scruggs, P. D. (2003). Infiltration on mountain slopes: a comparison of three environments. Geomorphology, 55(1-4), 5-24. https://doi.org/10.1016/S0169-555X(03)00129-6

Hutchinson, M. F. (1993). Development of a continent-wide DEM with applications to terrain and climate analysis., En M. Goodchild, Parks, B. & L. Steyaert (eds), Environmental Modeling with GIS (p. 392-399). New York, Estados Unidos: Oxford University Press.

Instituto Costarricense de Turismo (ICT). (2002). Plan de Desarrollo Turístico de Unidad Valle Central del Sector de Cartago. Recuperado https://www.ict.go.cr/es/documentos-institucionales/plan-nacional-y-planes-generales/planes-generales-por-unidad-de-planeamiento/valle-central/sector-cartago/115-pgut-sector-cartago/file.html

Jabro, J., Evans, R., Kim, Y., & Iversen, W. (2009). Estimating in situ soil-water retention and field water capacity in two contrasting soil textures. Irrigation Science, 27, 223-229. https://doi.org/10.1007/s00271-008-0137-9

Kundzewicz, Z & Döll, P. (2009). Will groundwater ease freshwater stress under climate change. Hydrological Sciences Journal, 54(4), 665-675. https://doi.org/10.1623/hysj.54.4.665

Li, M; Chu, R; Islam, A; Shen, S. 2020. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China. Environmental Science and Pollution Research, 28, 683-699. https://doi.org/10.1007/s11356-020-10432-9

López, S.; Expósito, J.; Esteller, M.; Gómez, M., Paredes, J.; & Esquivel, J. (2021). Delineation of protection zones for springs in fracture volcanic media considering land use and climate changes scenarios in Central Mexico region. Environmental Earth Sciences, 80, 366. https://doi.org/10.1007/s12665-021-09662-y

Min, L., Shen, Y., & Pei, H. (2015). Estimating groundwater recharge using deep vadose data under typical irrigated cropland in the piedmont region of the North China Plain. Journal of Hydrology, 527: 305-315. https://doi.org/10.1016/j.jhydrol.2015.04.064

Nath, T., & Krishna, B. (2014). Influence of soil texture and total organic matter content on soil hydraulic conductivity of some selected tea growing soils in Dibrugarh district of Assam, India. International Research Journal of Chemistry and Chemical Sciences, 1(1), 002-009.

Nemaxwi, P., Odiyo, J., & Makungo, R. (2019). Estimating of groundwater recharge response from rainfalls events in a se-arid fractured aquifer: Casa study of quaternary catchmmen A91H, Limpopo Province. South Africa. Cogent Engineering, 6, 1635815. https://doi.org/10.1080/23311916.2019.1635815

Neris, J., Jiménez, C., Fuentes, J., Morillas, M. (2012). Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain). Catena, 98, 55-62. https://doi.org/10.1016/j.catena.2012.06.006

PRUGAM (2007). Atlas Cartográfico Plan PRUGAM 2008-2030. MIVAH-MOPT-MIDEPLAN-MINSALUD-IVU-IFAM-CNFL-AYA

Rawls, W., Ahuja, L., Brakensiek, D., & Shirmohammadi, A. (1993). Infiltration and Soil Water Movement. En D. Maidment (Ed), Handbook of Hidrology (p 5.1-5.51). New York, USA: McGraw-Hill.

Rojas, H. (2010). Áreas de recarga hídrica de la parte media-alta de las microcuencas Palo, Marín y San Rafaelito, San Carlos, Costa Rica. UNED Research Journal, 2(2), 181-204. https://doi.org/10.22458/urj.v2i2.157

Sandoval, J. (2007). Principios de Riego y Drenaje. Ciudad de Guatemala; Editorial Universitaria.

Scalon, B; Reedy, R.; Stonestrom, D.; Prudic, D.; & Dennehy, K. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11, 1577-1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x

Schosinsky, G. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central, 34-35: 13-30. https://doi.org/10.15517/rgac.v0i34-35.4223

Schosinsky, G., & Losilla, M. (2000). Modelo analítico para determinar la infiltración con base en la lluvia mensual. Revista Geológica de América Central, 23: 43-55.

Seyfried, M., & Wilcox, B. (2006). Soil water storage and rooting depth: Key factors controlling recharge on rangelands. Hydrological Processes, 20, 3261-3275. https://doi.org/10.1002/hyp.6331

Shan, L; Qi-quan, L; Chang-quan; W; Bing; L; Xue-song; G; Yi-ding, L; De-yon, W. (2019). Spatial variability of soil bulk density and its controlling factors in and agricultural intensive area of Chengdu Plain, Southwest China. Journal of Integrative Agricultura, 18(2), 290-300. https://doi.org/10.1016/S2095-3119(18)61930-6

Shwetha, P., & Varija, K. (2015). Soil water retention curve from saturated hydraulic conductivity for sandy loam and loamy sand textured soils. Aquatic Procedia, 4: 1142-1149. https://doi.org/10.1016/j.aqpro.2015.02.145

Simge, V., & Aysen, D. (2015). Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenniplain(Burdur/Turkey). Environmental Earth Sciences,73(4), pp.17251744. https://doi.org/10.1007/s12665-014-3531-z

Snow, R., & Slingerland, R. (1987). Mathematical modeling of graded river profiles. The Journal of Geology, 95(1), 15-33. https://doi.org/10.1086/629104

Sojo, D., Denyer, P., Gazel, E., & Alvarado, G. (2017). Geología del cuadrante Tapantí (1: 50 000), Costa Rica. Revista Geológica de América Central, (56), 83-116. https://doi.org/10.15517/rgac.v0i56.29238

Sun, D., Yang, H, Guan, D., Yang, M., Wu, J., Yuan, F., Jin, C., Wang, A., & Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of the Total Environment, 626, 1394-1401. https://doi.org/10.1016/j.scitotenv.2018.01.104

Vargas, A., & Mora, R. (1999). Hidrogeoquímica y producción de manantiales en las formaciones Pacacua y Peña Negra. Revista Geológica de América Central, 22, 101-111.

Vélez, M., & Vásquez, L. (2004). Métodos para determinar la recarga en acuíferos. Avances en recursos hidráulicos, (11), 51-62.

Walker, G.; Zhang, L.; Ellis, T.; Hatton, T.; & Petheram, C. (2005). Estimating impacts of changed land use on recharge: Review of modelling and other approaches appropriate for management of dryland salinity. Hydrogeology Journal, 10, 68-90. https://doi.org/10.1007/s10040-001-0181-5

Whipple, K., & Tucker, G. (1999). Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661-17674. https://doi.org/10.1029/1999JB900120

Whipple, K., DiBiase, R., & Crosby, B. (2011). Bedrock Rivers. En J. Shroder & H. Wohl (Eds), Treatise on Geomorphology (p. 5050-573). San Diego, Estados Unidos: Academic Press.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.