Selection criteria for yield in cucumber (Cucumis sativus) grown under greenhouse conditions during the dry season

Selection criteria for yield in cucumber (Cucumis sativus) grown under greenhouse conditions during the dry season

Authors

DOI:

https://doi.org/10.22458/urj.v13i1.3373

Keywords:

Pearson correlation, Path analysis, Yield, Number of fruits per plant, Fruit weight, Parthenocarpic

Abstract

Introduction: Cucumber is among Costa Rica’s main vegetable crop, and selection criteria for yield are best studied by path coefficient analysis, which divides correlation coefficients into direct and indirect effect components. Objective: To obtain a path analysis for greenhouse cucumber yield. Methods: The crop was planted on coconut fiber as substrate, and managed with fertigation, from January to May 2015. Seven variables were evaluated. Results: Yield showed a positive and highly significant correlation with number of fruits per plant (r=0,39**). The main positive direct effects on yield were exhibited by number of fruits per plant (path coefficient-PC=1,75), fruit weight (PC=1,44), fruit diameter (PC=0,17) and fruit length (PC=0,06), while maximum positive indirect effects on yield were exhibited by fruit length (PC=1,31), fruit diameter (PC=0,95) and percentage of total soluble solids (PC=0,89) through fruit weight. On the other hand, the only negative direct effect on yield was exhibited by percentage of total soluble solids (PC=-0,01). Conclusions: Under these conditions, number of fruits per plant and fruit weight were the main yield contributing variables.

Author Biography

José Eladio Monge Pérez, Estación Experimental Agrícola Fabio Baudrit Moreno, Universidad de Costa Rica, Alajuela, Costa Rica

Docente en Sede de Guanacaste, e Investigador en Estación Experimental Agrícola Fabio Baudrit Moreno, Universidad de Costa Rica

References

Afangideh, U., & Uyoh, E. A. (2007). Genetic variability and correlation studies in some varieties of cucumber (Cucumis sativus L.). Jordan Journal of Agricultural Sciences, 3(4), 376-384.

Ahirwar, C. S., Singh, D. K., & Kushwaha, M. L. (2017). Assessment of genetic variation in cucumber (Cucumis sativus L.) germplasm on correlation, path analysis and cluster analysis. Chemical Science Review and Letters, 6(23), 1886-1893.

Arunkumar, K. H., Patil, M. G., Hanchinamani, C. N., Shanker Goud, I., & Hiremath, S. V. (2011). Genetic relationship of growth and development traits with fruit yield in F2 population of BGDL x Hot season of cucumber (Cucumis sativus L.). Karnataka Journal of Agricultural Sciences, 24(4), 497-500.

Bartaula, S., Adhikari, A., Panthi, U., Karki, P., & Timalsena, K. (2019). Genetic variability, heritability and genetic advance in cucumber (Cucumis sativus L.). Journal of Agriculture and Natural Resources, 2(1), 215-222.

Chacón-Padilla, K., & Monge-Pérez, J. E. (2016). Evaluación del rendimiento y la calidad de seis genotipos de pepino (Cucumis sativus L.) cultivados bajo invernadero en Costa Rica. Revista Colombiana de Ciencias Hortícolas, 10(2), 323-332.

Deepa, S. K., Hadimani, H. P., Hanchinamani, C. N., Shet, R., Koulgi, S., & Ashok. (2018). Studies on character association in cucumber (Cucumis sativus L.). International Journal of Current Microbiology and Applied Sciences, 7(11), 1977-1982.

Dehua, M., Shuzhen, L., Wenyun, S., Zhenrong, H., Shuju, L., & Qingdong, Z. (1995). Phenotypic correlation and path analysis in cucumber. Acta Agriculturae Boreali-Sinica, 10(2), 34-37.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2016). Infostat versión 2016. Grupo Infostat, FCA. Córdoba, Argentina: Universidad Nacional de Córdoba. www.infostat.com.ar

Dutta, R. K. (2013). Study on genetic variability, heritability, genetic advance, correlation and path coefficient analysis in diverse genotypes of cucumber (Cucumis sativus L.). Institute of Agricultural Sciences, Department of Horticulture. Varanasi, India: Banaras Hindu University.

Ene, C. O., Ogbonna, P. E., Agbo, C. U., & Chukwudi, U. P. (2016). Evaluation of sixteen cucumber (Cucumis sativus L.) genotypes in derived savannah environment using path coefficient analysis. Notulae Scientia Biologicae, 8(1), 85-92.

Feyzian, E., Dehghani, H., Rezai, A. M., & Jalali, M. (2009). Correlation and sequential path model for some yield-related traits in melon (Cucumis melo L.). Journal of Agricultural Science and Technology, 11, 341-353.

Gangadhara, K., Kumar, R., Selvakumar, R., Apparao, V. V., & Yadav, L. P. (2019). Evaluation of cucumber hybrids/lines for yield and quality under polyhouse. International Journal of Current Microbiology and Applied Sciences, 8(6), 1652-1661.

Golabadi, M., Golkar, P., & Eghtedary, A. (2015). Combining ability analysis of fruit yield and morphological traits in greenhouse cucumber (Cucumis sativus L.). Canadian Journal of Plant Science, 95, 377-385.

Hanchinamani, C. N. (2006). Genetic variability, divergence, heterosis and combining ability studies in cucumber (Cucumis sativus L.). College of Agriculture, Dharwad, Department of Horticulture. Dharwad, India: University of Agricultural Sciences.

Hasan, R., Hossain, M. K., Alam, N., Bashar, A., Islam, S., & Tarafder, M. J. (2015). Genetic divergence in commercial cucumber (Cucumis sativus L.) genotypes. Bangladesh Journal of Botany, 44(2), 201-207.

Karthick, K., Arumugam, T., Rajasree, V., Ganesan, K. N., & Karthikeyan, M. (2019). Studies on correlation and path analysis of yield attributes in cucumber (Cucumis sativus L.). Journal of Pharmacognosy and Phytochemistry, 8(6), 342-345.

Kathayat, K., Rawat, M., Kandpal, G., Pandey, G., Chauhan, P., & Tiwari, R. (2018). Genetic variability in cucumber (Cucumis sativus L.): a review. Plant Archives, 18(2), 1223-1228.

Kultur, F., Harrison, H. C., & Staub, J. E. (2001). Spacing and genotype affect fruit sugar concentration, yield, and fruit size of muskmelon. Hort Science, 36(2), 274-278.

Kumar, S., Kumar, R., Gupta, R. K., & Sephia, R. (2011). Studies on correlation and path-coefficient analysis for yield and its contributing traits in cucumber. Crop Improvement, 38(1), 18-23.

Kumari, A., Singh, A. K., Moharana, D. P., Kumar, A., & Kumar, N. (2018). Character relationship and path coefficient analysis for yield and yield components in diverse genotypes of cucumber (Cucumis sativus L.). The Pharma Innovation Journal, 7(5), 33-38.

Kumari, B. (2017). Evaluation of phenotypic trait analysis of cucumber germplasm. International Journal of Engineering and Applied Sciences, 4(9), 51-53.

Monge-Pérez, J. E., Cruz-Coronado, J. A., & Loría-Coto, M. (2021). Determinación de parámetros de selección para el rendimiento en pepino (Cucumis sativus) cultivado bajo invernadero. Avances en Investigación Agropecuaria, 25(1), 43-55.

Murtadha, M. A., & Sanni, T. A. (2018). Interaction effects of seasons and farming practices on correlation and path analysis of yield of cucumber (Cucumis sativus L.). Journal of Ecobiotechnology, 10, 21-24.

Neata, G., Hoza, G., Teodorescu, R. I., Basaraba, A., Petcuci, A., & Sima, R. (2016). Phosphorus, potassium and nitrate contents in fruit of pickling cucumbers grown in a high tunnel. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 541-547.

Nwofia, G. E., Amajuoyi, A. N., & Mbah, E. U. (2015). Response of three cucumber varieties (Cucumis sativus L.) to planting season and NPK fertilizer rates in lowland humid tropics: sex expression, yield and inter-relationships between yield and associated traits. International Journal of Agriculture and Forestry, 5(1), 30-37.

Pal, S., Sharma, H. R., Das, A., & Pandav, A. K. (2017). Character association and path analysis for fruit yield and its contributing traits in cucumber (Cucumis sativus L.). International Journal of Agriculture, Environment and Biotechnology, 10(2), 163-170.

Rajawat, K. S., Shaktawat, S. K., Jat, S. L., & Tak, J. K. (2018). Path analysis and characters association of cucumber (Cucumis sativus L.). International Journal of Chemical Studies, 6(4), 2414-2419.

Reddy, B. P., Begum, H., Sunil, N., & Reddy, M. T. (2017). Correlation and path coefficient analysis in muskmelon (Cucumis melo L.). International Journal of Current Microbiology and Applied Sciences, 6(6), 2261-2276.

Sharma, S., Kumar, R., Chatterjee, S., & Sharma, H. R. (2018). Correlation and path analysis studies for yield and its attributes in cucumber (Cucumis sativus L.). International Journal of Chemical Studies, 6(2), 2045-2048.

Shet, R. M., Shantappa, T., Ashok, & Gurumurthy, S. B. (2018). Genetic variability and correlation studies for productivity traits in cucumber (Cucumis sativus L.). International Journal of Chemical Studies, 6(5), 236-238.

Soleimani, A., Ahmadikhah, A., & Soleimani, S. (2009). Performance of different greenhouse cucumber cultivars (Cucumis sativus L.) in southern Iran. African Journal of Biotechnology, 8(17), 4077-4083.

Ullah, M. Z., Hasan, M. J., Chowdhury, A. Z., Saki, A. I., & Rahman, A. H. (2012). Genetic variability and correlation in exotic cucumber (Cucumis sativus L.) varieties. Bangladesh Journal of Plant Breeding and Genetics, 25(1), 17-23.

Veena, R., Sidhu, A. S., Pitchaimuthu, M., & Souravi, K. (2013). Character association for fruit yield and yield traits in Cucumber (Cucumis sativus L.). Electronic Journal of Plant Breeding, 4(1), 1108-1112.

Verma, S. (2003). Genetic variability and correlation studies in cucumber (Cucumis sativus L.). College of Horticulture Dr. Yashwant Singh Parmar. Nauni, Solan (HP), India: University of Horticulture and Forestry.

Published

2021-05-31

How to Cite

Monge Pérez, J. E., Chacón Padilla, K., & Loría Coto, M. (2021). Selection criteria for yield in cucumber (Cucumis sativus) grown under greenhouse conditions during the dry season. UNED Research Journal, 13(1), e3373. https://doi.org/10.22458/urj.v13i1.3373

Issue

Section

Articles
Loading...