Growth, photosynthesis and oxidative stress in Prosopis nigra (Fabaceae) under simulated glyphosate drift


Algarrobo negro

How to Cite

Meloni, D. A., & Inés Bolzón, G. (2021). Growth, photosynthesis and oxidative stress in Prosopis nigra (Fabaceae) under simulated glyphosate drift . UNED Research Journal, 13(1), e3170.


Introduction: The tree Prosopis nigra is native to the Western Chaco phytogeographic region, affected by the application of glyphosate in the surrounding crops. Objective: To determine the impact of simulated glyphosate drift on growth, photosynthesis and oxidative stress in P. nigra seedlings. Methods: We simulated drift in seedlings at doses of 0, 200, 400 and 800 g a.e. ha-1 of glyphosate. We also measured gas exchange and modulated fluorescence emission of chlorophyll a. Results: Glyphosate reduced biomass, photosynthetic rate, and stomatal conductance. Doses of 400 and 800 g a.e. ha-1 glyphosate produced photoinhibition. The electron transport rate was sensitive to glyphosate, and it decreased at all doses of the herbicide. Glyphosate generated oxidative stress, and produced damage to membranes, because of the accumulation of H2O2 and O2.. Conclusions: Glyphosate reduces growth and photosynthesis in these seedlings. The inhibition of photosynthesis is due to stomatal closure, and alterations in the photochemical stage, associated with oxidative stress.


Alcántara de la Cruz, R., Barro, F., & Domínguez-Valenzuela, J.A., & De Prado, R. (2016). Physiological, morphological and biochemical studies of glyphosate tolerance in Mexican Cologania (Cologania broussonetii (Balb.) DC.). Plant Physiology and Biochemistry, 98, 72-80. DOI: 10.1016/j.plaphy.2015.11.009

Ashraf, M., & Harris, P.J.C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163–190. DOI: 10.1007/s11099-013-0021-6

Bilger, W., Schereiber, U., & Bock, M. (1995). Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia, 102(4), 425–432. DOI: 10.1007/bf00341354

Cakmak, I., & Horst, W.J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83(3), 463–468

Cañero, A.I., Cox, L., Redondo-Gómez, S., Mateos-Naranjo, E., Hermosín, M.C., & Cornejo, J. (2011). Effect of the herbicides terbuthylazine and glyphosate on photosystem II photochemistry of young olive (Olea europaea) plants. Journal of Agricultural and Food Chemistry, 59(10), 5528‐5534. DOI: 10.1021/jf200875u

Carvalho, L.B., Duke, S.O., & da Costa, A.A.P.L. (2018). Physiological responses of Eucalyptus x urograndis to glyphosate are dependent on the genotype. Scientia Forestalis, 46(118), 177-187. DOI: 10.18671/scifor.v46n118.04

Cerqueira, J.V.A., Silviera, J.A.G, Carvalho, F.E.L, Cunha, J.R., & Lima Neto, M.C. (2019). The regulation of P700 is an important photoprotective mechanism to NaCl‐salinity in Jatropha curcas. Physiologia Plantarum, 167(3), 404-417. DOI: 10.1111/ppl.12908

Corpas, F.J., Barroso, J.B., Palma, J.M., & Rodríguez-Ruiz M. (2017). Plant peroxisomes: a nitro-oxidative cocktail. Redox Biology, 11, 535-542. DOI: 10.1016/j.redox.2016.12.033

De María, N., Becerril, J.M., García-Plazaola, J.I., Hernandez, A., de Felipe, M.R., & Fernandez-Pascual, M. (2006). New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. Journal of Agricultural and Food Chemistry, 54(7), 2621-2628. DOI: 10.1021/jf058166c

Dupraz, V., Coquillé, N., Ménard, D., Sussarellu, R., Haugarreau, L., & Stachowski-Haberkorn, S. (2016). Microalgal sensitivity varies between a diuron-resistant strain and two wild strains when exposed to diuron and irgarol, alone and in mixtures. Chemosphere, 151, 241–252. DOI: 10.1016/j.chemosphere.2016.02.073

Elstner, R., & Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70(2), 616–620. DOI: 10.1016/0003-2697(76)90488-7

Felker, P. (2009). Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In De la Barrera, E. & Smith, W.K. (Eds.). Perspectives in Biophysical Plant Ecophysiology: a tribute to Park S. Nobel (pp 221-255). México Universidad Nacional Autónoma de México

Genty, B., Briantais, J.M., & Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990(1), 87-92. DOI: 10.1016/S0304-4165(89)80016-9

Giménez, A.M., & Moglia, J.G. (2003). Árboles del Chaco Argentino. Guía para el reconocimiento dendrológico. Argentina: Editorial Facultad de Ciencias Forestales UNSE

Gomes, M.T.G., da Luz, A.C., dos Santos, M.R., Batitucci, M.C.P., Silva, D.M., & Falqueto, A.R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP cholophyll a fluorescence transient. Scientia Horticulturae, 142, 49-56. DOI: 10.1016/j.scienta.2012.04.026

Gomes, M.P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M., Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of Experimental Botany, 65(17), 4691-4703. DOI: 10.1093/jxb/eru269

Huang, W., Zhang, S.B., & Cao, K.F. (2010). Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. Plant and Cell Physiology, 51(11), 1922–1928. DOI: 10.1093/pcp/pcq144

Laisk, A., & Loreto, F. (1996). Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Plant Physiology, 110(3), 903–911

Meloni, D.A., Silva, D.M., Ledesma, R., & Bolzón, G.I. (2017). Nutrición mineral y fotosíntesis en plántulas de algarrobo blanco, Prosopis alba (Fabaceae) bajo estrés salino. UNED Research Journal, 9(2), 297-304. DOI: 10.22458/urj.v9i2.1903

Meloni, D.A., Targa, M.G., Fraño, A., Ledesma, R., Silva, M.C., & Catán, A. (2019). Glyphosate drift inhibes photosynthesis and produces oxidative stress to Eucalyptus camaldulensis. Revista de Ciencias Forestales Quebracho, 27(1,2), 5-12

Moldes C.A., Medici, L.O., Abrahão, O.S., Tsai, S.M., & Azevedo, R.A. (2008). Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiologiae Plantarum, 30, 469–479. DOI: 10.1007/s11738-008-0144-8

Niyogi, K.K., Björkman, O., & Grossman, A.R. (1997). The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14162–14167. DOI: 10.1073/pnas.94.25.14162

Olesen, C.F., & Cedergreen, N. (2010). Glyphosate uncoples gas exchange and chlorophyll fluorescence. Pest Management Science, 66(5), 536-542. DOI: 10.1002/ps.1904

Paiva, A.L., Passaia, G., Lobos, A.K.M., Messeder, D.J., Silveira, J.A.G., & Pinheiro, M.M. (2019). Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environmental and Experimental Botany, 158, 12-21. DOI: 10.1016/j.envexpbot.2018.10.027

Radwan, D.E.M., & Fayez, K.A. (2016). Photosynthesis, antioxidant status and gas-exchange are altered by glyphosate application in peanut leaves. Photosynthetica, 54, 307–316. DOI: 10.1007/s11099-016-0075-3

Santos, S.A., Tuffi-Santos, L.D., Alfenas, A.C., Faria, A.T., & Sant’anna –Santos, B.F. (2019). Differential Tolerance of Clones of Eucalyptus grandis Exposed to Drift of the Herbicides Carfentrazone-Ethyl and Glyphosate. Planta Daninha, 37, e019175977. DOI: 10.1590/s0100-83582019370100024

Serra, A.A., Nuttens, A., Larvor, V., Relault, D., Cou´e, I., Sulmon, C., & Gouesbet, G. (2013). Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 64(10), 2753‐2766. DOI: 10.1093/jxb/ert119

Sousa, C.P., Farías, M.E., Shock, A.A., & Bacarin, M.A. (2014). Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide. Acta Physiologiae Plantarum, 36, 3051-3062. DOI: 10.1007/s11738-014-1675-9

Tuffi Santos, L.D., Meira, R.M.S.A., Ferreira, F.A., Sant’Anna-Santos, B.F., & Ferreira, L.R. (2007). Morphological responses of different eucalypt clones submitted to glyphosate drift, Environmental and Experimental Botany, 59(1), 1-20. DOI: 10.1016/j.envexpbot.2005.09.010

Vivancos, P.D., Driscoll, S.P., Bulman, C.A., Ying, L., Emami, K., Treumann, A., Mauve, C., Noctor, G., & Foyer, C.H. (2011). Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiology, 157(1), 256–268. DOI: 10.1104/pp.111.181024

Yuan, X., Guo, P., Qi, X., Ning, N., Wang, H., Wang, H., Wang, X., & Yang, Y. (2013). Safety of herbicide Sigma Broad on Radix Isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses. Pesticide Biochemistry and Physiology, 106(1-2), 45–50. DOI: 10.1016/j.pestbp.2013.04.002.

Zhong, G., Zhonghua, W., Jun, Y., & Chai, L. (2018). Responses of Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara to glyphosate exposure, Chemosphere,193, 385-393. DOI: 10.1016/j.chemosphere.2017.10.173

Zhou, M., Diwu, Z., Panchuk-Voloshina, N., & Haugland, R.P. (1997). A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry, 253(2), 162–168. DOI: 10.1006/abio.1997.2391.

Zushi, K., Kajiwara, S., & Matsuzoe, N. (2012). Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae, 148, 39-46. DOI: 10.1016/j.scienta.2012.09.022.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.