Production of mini cucumber (Cucumis sativus) grown under greenhouse conditions: evaluation of two genotypes

Production of mini cucumber (Cucumis sativus) grown under greenhouse conditions: evaluation of two genotypes

Authors

DOI:

https://doi.org/10.22458/urj.v11i3.2720

Keywords:

Cucumis sativus, genotypes, mini cucumber, greenhouse, yield, quality

Abstract

Introduction:  Mini cucumber is an interesting new crop in Costa Rica.  Objective:  to evaluate yield and quality of two mini parthenocarpic cucumber genotypes (Larino and 22-20-781) grown under greenhouse conditions at the Agricultural Experimental Station Fabio Baudrit Moreno located in Alajuela, Costa Rica.  Methods:  The crop was planted on coconut fiber as substrate, pruned to one stem per plant, and managed with fertigation.  Results:  Flowering started 16 days after transplant (dat) and harvest started 26 dat, for both genotypes.  Larino yielded fruits with higher length (12,19cm), but lower diameter (41,44mm) and lower percentage of total soluble solids (3,00 °Brix), compared to 22-20-781 genotype.  There were no significant differences in fruit weight among genotypes (137,37 to 140,38g).  First quality fruits showed higher length and diameter, as well as a higher percentage of total soluble solids, than second quality fruits.  Conclusions:  Larino genotype obtained the highest total number of fruits per plant (98,63), and the highest commercial (29,55kg/m2) and first quality yield (18,60kg/m2), so it is considered the best adapted to the conditions of the trial.

References

Abu-Zahra, T. R., & Ateyyat, M. A. (2016). Effect of various shading methods on cucumber (Cucumis sativus L.) growth and yield production. International Journal of Environment and Sustainability, 5(1), 10-17.

Arshad, I. (2017). Effect of water stress on the growth and yield of greenhouse cucumber (Cucumis sativus L.). PSM Biological Research, 2(2), 63-67.

Arshad, I., Ali, W., & Khan, Z. A. (2014). Effect of different levels of NPK fertilizers on the growth and yield of greenhouse cucumber (Cucumis sativus) by using drip irrigation technology. International Journal of Research, 1(8), 650-660.

Bojacá, C., & Monsalve, O. (2012). Manual de producción de pepino bajo invernadero. Bogotá, Colombia: Universidad de Bogotá Jorge Tadeo Lozano.

Cardoso, A. I. (2002). Avaliação de cultivares de pepino tipo caipira sob ambiente protegido em duas épocas de semeadura. Bragantia, 61(1), 43-48.

Cardoso, A. I., & Silva, N. (2003). Avaliação de híbridos de pepino tipo japonês sob ambiente protegido em duas épocas de cultivo. Horticultura Brasileira, 21(2), 170-175.

Casaca, A. (2005). Guías tecnológicas de frutas y vegetales. El cultivo del pepino. Recuperado de http://www.innovacion.gob.sv/inventa/attachments/article/2286/pepino.pdf

Chacón-Padilla, K., & Monge-Pérez, J. E. (2017). Evaluación de rendimiento y calidad de tres genotipos de pepino tipo mini (Cucumis sativus L.) cultivados bajo invernadero en Costa Rica, durante la época seca. Tecnología en Marcha, 30(1), 14-26.

Crosby, L. C. (2008). Growth and consumer evaluation of Cucumis sativus L. cultivated in controlled environments (Tesis de maestría).Texas Tech University, Texas, USA.

FAO. (2002). El cultivo protegido en clima mediterráneo: pepino. Recuperado de http://www.fao.org/docrep/005/s8630s/s8630s08.htm#bm08..2.4.5

Galindo, F. V., Fortis, M., Preciado, P., Trejo, R., Segura, M. A., & Orozco, J. A. (2014). Caracterización físico-química de sustratos orgánicos para producción de pepino (Cucumis sativus L.) bajo sistema protegido. Revista Mexicana de Ciencias Agrícolas, 5(7), 1219-1232.

Gómez-López, M. D., Fernández-Trujillo, J. P., & Baille, A. (2006). Cucumber fruit quality at harvest affected by soilless system, crop age and preharvest climatic conditions during two consecutive seasons. Scientia Horticulturae, 110, 68-78.

Grijalva, R. L., Macías, R., Grijalva, S. A., & Robles, F. (2011). Evaluación del efecto de la fecha de siembra en la productividad y calidad de híbridos de pepino europeo bajo condiciones de invernadero en el noroeste de Sonora. Biotecnia, 13(1), 29-36.

Haifa. (2011). Nutritional recommendations for cucumber in open fields, tunnels and greenhouse. Recuperado de http://www.haifa-group.com/files/Guides/Cucumber.pdf

Hochmuth, R. C., Davis, L. L., Laughlin, W. L., Simonne, E. H., Sargent, S. A., & Berry, A. (2004). Evaluation of twelve greenhouse mini cucumber (Beit Alpha) cultivars and two growing systems during the 2002-2003 winter season in Florida. Research report 2003-2004, University of Florida, IFAS, Florida, EEUU. Recuperado de http://svaec.ifas.ufl.edu/docs/pdf/svreports/greenhousehydroponics/2003-04.pdf

Jasso-Chaverria, C., Hochmuth, G. J., Hochmuth, R. C., & Sargent, S. A. (2005). Fruit yield, size, and color responses of two greenhouse cucumber types to nitrogen fertilization in perlite soilless culture. Hort Technology, 15(3), 565-571.

Johnny's Selected Seeds. (2014). Cucumber types and terminology. Recuperado de http://www.johnnyseeds.com/assets/information/cucumbers-types-terminology-8989.pdf

Kapuriya, V. K., Ameta, K. D., Teli, S. K., Chittora, A., Gathala, S., & Yadav, S. (2017). Effect of spacing and training on growth and yield of polyhouse grown cucumber (Cucumis sativus L.). International Journal of Current Microbiology and Applied Sciences, 6(8), 299-304.

Lamb, E. M., Shaw, N. L., & Cantliffe, D. J. (2001). Beit Alpha cucumber: a new greenhouse crop for Florida. Recuperado de http://www.hos.ufl.edu/protectedag/EDIS/CV27700.pdf

Musmade, A., & Desai, U. (2003). Tratado de ciencia y tecnología de las hortalizas: el pepino y el melón. Zaragoza, España: Acribia.

Nomura, E. S., & Cardoso, A. I. (2000). Redução da área foliar e o rendimento do pepino japonês. Scientia Agricola, 57(2), 257-261.

Patil, M. A., & Bhagat, A. D. (2014). Yield response of cucumber (Cucumis sativus L.) to shading percentage of shade net. International Journal of Agricultural Engineering, 7(1), 243-248.

Premalatha, M. G., Wahundeniya, K. B., Weerakkody, W. A., & Wicramathunga, C. K. (2006). Plant training and spatial arrangement for yield improvements in greenhouse cucumber (Cucumis sativus L.) varieties. Tropical Agricultural Research, 18, 346-357.

Rahil, M. H., & Qanadillo, A. (2015). Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agricultural Water Management, 148, 10-15.

Reche, J. (2011). Cultivo de pepino en invernadero. Madrid, España: Ministerio de Medio Ambiente y Medio Rural y Marino.

Sarhan, T. Z., & Ismael, S. F. (2014). Effect of low temperature and seaweed extracts on flowering and yield of two cucumber cultivars (Cucumis sativus L.). International Journal of Agricultural and Food Research, 3(1), 41-54.

Shaw, N. L., Cantliffe, D. J., Funes, J., & Shine III, C. (2004). Successful Beit Alpha cucumber production in the greenhouse using pine bark as an alternative soilless media. Hort Technology, 14(2), 289-294.

Shaw, N. L., Cantliffe, D. J., Rodríguez, J. C., Taylor, S., & Spencer, D. M. (2000). Beit Alpha cucumber: an exciting new greenhouse crop. Proceedings of the Florida State Horticultural Society, 113, 247-253.

Soleimani, A., Ahmadikhah, A., & Soleimani, S. (2009). Performance of different greenhouse cucumber cultivars (Cucumis sativus L.) in southern Iran. African Journal of Biotechnology, 8(17), 4077-4083.

Vasco, R. (2003). El cultivo de pepino bajo invernadero. In F. A. Camacho, Técnicas de producción en cultivos protegidos (Vol. Tomo 2, pp. 691-722). Madrid, España: Caja Rural Intermediterránea (Cajamar).

Published

2019-12-01

How to Cite

Cruz-Coronado, J. A., & Monge-Pérez, J. E. (2019). Production of mini cucumber (Cucumis sativus) grown under greenhouse conditions: evaluation of two genotypes. UNED Research Journal, 11(3), 410–417. https://doi.org/10.22458/urj.v11i3.2720

Issue

Section

Articles
Loading...