Physicochemical and isotopic (18O and 2H) characterization of the northern region of Tempisque aquifer, Costa Rica

Physicochemical and isotopic (18O and 2H) characterization of the northern region of Tempisque aquifer, Costa Rica

Authors

  • Ariana Ordóñez-Olivares Research Center of Environmental Pollution (Universidad de Costa Rica, Centro de Investigación en Contaminación Ambiental (CICA), Laboratorio de Calidad de Aguas, 2060 San Pedro, San José, Costa RicaCICA), University of Costa Rica https://orcid.org/0000-0001-5932-4753
  • Wilson Beita-Sandí Universidad de Costa Rica, Centro de Investigación en Contaminación Ambiental (CICA), Laboratorio de Calidad de Aguas, 2060 San Pedro, San José, Costa Rica https://orcid.org/0000-0002-3825-2858

DOI:

https://doi.org/10.22458/urj.v12i1.2588

Keywords:

Groundwater, pollution, stable isotopes, Tempisque, Guanacaste

Abstract

Introduction: Groundwater resources supply 70% of drinking water in Costa Rica. Groundwater is in risk of pollution and overexploitation due to the lack of good management practices. There has been an increase in the number of wells registered in the Guanacaste area, particularly in the Tempisque aquifer. Objective: To investigate and generate new physicochemical and isotopic information (18O and 2H) to characterize the water resource of the northern region of the Tempisque aquifer. Methodology: We conducted four groundwater samplings in 12 groundwater wells between May 11 and November 12, 2010. We analyzed water samples to determine stable isotopes using off-axis integrated cavity output spectroscopy and also for physicochemical characterization. Results: We classified groundwater as hard and very hard water. The range of measured pH values was 6.57–7.91. The average conductivity in the study area was 437μS/cm. The range of bicarbonate concentrations was 129-342mg/L HCO3. The groundwater in the northern region of the Tempisque aquifer is calcium bicarbonate and is characterized by an average temperature of 28.0°C. Conclusions: A decade ago, we found no groundwater contamination by metals neither evidence of saline intrusion. The aquifer recharge areas are at the same heights and some wells are characterized by meteorological recharges.

References

APHA, AWWA, & WEF. (2005). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC, USA: American Public Health Association.

Arias Salguero, M. E., Losilla Penón, M., & Arredondo Li, S. (2006). Estado del conocimiento del agua subterránea en Costa Rica. Boletin Geologico y Minero, 117(1), 63–73.

Calvo, J. C. (1990). Water resources development in Costa Rica 1970–2000. Hydrological Sciences Journal, 35(2), 185–196. DOI: 10.1080/02626669009492417

Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702–1703. DOI: 10.1126/science.133.3465.1702

Cuadrado Quesada, G. (2017). Gobernanza de aguas subterráneas, conflictos socioambientales y alternativas: experiencias en Costa Rica. Anuario de Estudios Centroamericanos, 43, 393. DOI: 10.15517/aeca.v1i1.28852

Fathmawati, F., Fachiroh, J., Sutomo, A. H., & Putra, D. P. E. (2018). Origin and distribution of nitrate in water well of settlement areas in Yogyakarta, Indonesia. Environmental Monitoring and Assessment, 190(11). DOI: 10.1007/s10661-018-6958-y

Gómez Cruz, A., & Arredondo, S. (1994). Hidrología isotópica del Valle del río Tempisque, Provincia de Guanacaste, Costa Rica. In IAEA (Ed.), Estudios de hidrología isotópica en América Latina 1994 (pp. 119–138). Vienna, Austria: IAEA.

Hanrahan, G., & Lu, K. (2006). Application of Factorial and Response Surface Methodology in Modern Experimental Design and Optimization. Critical Reviews in Analytical Chemistry, 36(3–4), 141–151. DOI: 10.1080/10408340600969478

He, L. M., Lu, J., & Shi, W. (2007). Variability of fecal indicator bacteria in flowing and ponded waters in southern California: Implications for bacterial TMDL development and implementation. Water Research, 41(14), 3132–3140. DOI: 10.1016/j.watres.2007.04.014

Hunt, R. J., Coplen, T. B., Haas, N. L., Saad, D. A., & Borchardt, M. A. (2005). Investigating surface water–well interaction using stable isotope ratios of water. Journal of Hydrology, 302(1–4), 154–172. DOI: 10.1016/j.jhydrol.2004.07.010

IAEA. (2019). Global Network of Isotopes in Precipitation (GNIP) | IAEA. Retrieved from https://www.iaea.org/services/networks/gnip

Jiménez R., J. A., & González J., E. (2001). La Cuenca del Río Tempisque: Perspectivas para un Manejo Integral. San José, Costa Rica.

Kasambala Donga, T., & Eklo, O. M. (2018). Environmental load of pesticides used in conventional sugarcane production in Malawi. Crop Protection, 108(January), 71–77. DOI: 10.1016/j.cropro.2018.02.012

Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 8(1), 1–13. DOI: 10.1016/j.ecolind.2007.06.002

Kuzdas, C. (2012). Unpacking water conflict in Guanacaste, Costa Rica. Global Water Forum. Retrieved from http://www.globalwaterforum.org/2012/10/16/unpacking-?‐water-?‐conflict-?‐in-?‐ guanacaste-?‐costa-?‐rica/

Lachniet, M. S., & Patterson, W. P. (2002). Stable isotope values of Costa Rican surface waters. Journal of Hydrology, 260(1–4), 135–150. DOI: 10.1016/S0022-1694(01)00603-5

Mende, A., Astorga, A., & Neumann, D. (2007). Strategy for groundwater management in developing countries: A case study in northern Costa Rica. Journal of Hydrology, 334(1–2), 109–124. DOI: 10.1016/j.jhydrol.2006.10.016

Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39(12), 2621–2635. DOI: 10.1016/j.watres.2005.04.024

Pulido-Bosch, A., Tahiri, A., & Vallejos, A. (1999). Hydrogeochemical characteristics of processes in the Temara aquifer in northwestern Morocco. Water, Air, and Soil Pollution, 114(3–4), 323–337. DOI: 10.1023/A:1005167223071

Reynolds-Vargas, J., Fraile-Merino, J., & Hirata, R. (2006). Trends in Nitrate Concentrations and Determination of its Origin Using Stable Isotopes (18O and 15N) in Groundwater of the Western Central Valley, Costa Rica. Ambio, 35(5), 229–236. DOI: 10.1579/05-R-046R1.1

Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304. DOI: 10.1038/nbt0308-303

Saunders, J. A., Mohammad, S., Korte, N. E., Lee, M. K., Fayek, M., Castle, D., & Barnett, M. O. (2006). Groundwater geochemistry, microbiology, and mineralogy in two arsenic-bearing holocene alluvial aquifers from the United States. ACS Symposium Series, 915, 191–205. DOI: 10.1021/bk-2005-0915.ch014

Scherer, M. M., Richter, S., Valentine, R. L., & Alvarez, P. J. J. (2000). Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Microbiology, 26(4), 221–264. DOI: 10.1080/10408410091154237

Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA). (2010). Dirección de Investigación y Gestión Hídrica: Listado de Pozos para la Provincia de Guanacaste. DIGH-SENARA, Costa Rica. Retrieved from http://base-digh.Senara.or.cr/usuarios/uexSenara/admin/ lprovcanton. php?b=2

Socki, R. A. (1999). On-line technique for measuring stable oxygen and hydrogen isotopes from microliter quantities of water. Analytical Chemistry, 71(11), 2250–2253. DOI: 10.1021/ac981140i

Solano-Quintero, J., & Villalobos-Flores, R. (2001). Aspectos fisiográficos aplicados a un bosquejo de regionalización geográfico climático de Costa Rica. Tópicos meteorológicos y Oceanográficos, 8(1), 26–39.

Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New York: A Wiley-Interscience Publication.

Swartjes, F. A., Rutgers, M., Lijzen, J. P. A., Janssen, P. J. C. M., Otte, P. F., Wintersen, A., … Posthuma, L. (2012). State of the art of contaminated site management in The Netherlands: Policy framework and risk assessment tools. Science of The Total Environment, 427–428, 1–10. DOI: 10.1016/j.scitotenv.2012.02.078

Tomaszkiewicz, M., Abou Najm, M., & El-Fadel, M. (2014). Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environmental Modelling and Software, 57, 13–26. DOI: 10.1016/j.envsoft.2014.03.010

Townley, L. R., & Trefry, M. G. (2000). Surface water-groundwater interaction near shallow circular lakes: Flow geometry in three dimensions. Water Resources Research, 36(4), 935–948. DOI: 10.1029/1999WR900304

Valverde, R. (2013). Disponibilidad, distribución, calidad y perspectivas del agua en Costa Rica. Revista de Ciencias Ambientales, 45(1), 5–12. DOI: 10.15359/rca.45-1.1

Velasco, A., Rodríguez, J., Castillo, R., & Ortíz, I. (2012). Residues of organochlorine and organophosphorus pesticides in sugarcane crop soils and river water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 47(9), 833–841. DOI: 10.1080/03601234.2012.693864

Wang, J., He, J., & Chen, H. (2012). Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432, 216–226. DOI: 10.1016/j.scitotenv.2012.06.005

Published

2020-03-27

How to Cite

Ordóñez-Olivares , A. ., & Beita-Sandí, W. (2020). Physicochemical and isotopic (18O and 2H) characterization of the northern region of Tempisque aquifer, Costa Rica. UNED Research Journal, 12(1), e2588. https://doi.org/10.22458/urj.v12i1.2588

Issue

Section

Articles
Loading...