Halochromic properties and antimicrobial potential of crude extracts from five species of ornamental plants

Halochromic properties and antimicrobial potential of crude extracts from five species of ornamental plants

Authors

DOI:

https://doi.org/10.22458/urj.v11i3.2586

Keywords:

antimicrobial, halochromism, Thunbergia erecta, anthocyanin, Xanthomonas oryzae pv. oryzae, Pantoea agglomerans, Bacillus subtilis

Abstract

Introduction: the colours of flowers are a result of secondary metabolites that have long been used in the medical and textile industries, and those that are halochromic are used in colour display because they change color according to pH changes, but many species are yet to be studied in detail. Objective: to explore the halochromic properties and the antimicrobial potentials of the crude extracts of several ornamental plants. Methods: we used aqueous and organic solvents to extract pigments from petals of five fascinating flowers planted around International Institute of Tropical Agriculture station, Cotonou, Benin: Allamanda blanchetii, Cascabela thevetia, Eichhornia crassipes, Ixora casei and Thunbergia erecta, followed by an investigation into their halochromic properties. Antibacterial potentials of the extracts were tested on important rice pathogens: Xanthomonas oryzae pv. oryzae, and Pantoea agglomerans, which are gram-negative bacteria; and on Bacillus subtilis, a gram-positive bacterium. Results: The crude extracts of T. erecta and A. blanchetii have good halochromic properties within pH 2 – 12, exhibiting distinct colours. The chromophores of the C. thevetia, E. crassipes, and I. casei are not halochromic as the colours of the crude extracts remain the same at the pH range except pH 12 which is similar for the five extracts. Crude extracts of T. erecta inhibited growth of P. agglomerans without development of resistance, whereas the bacteria developed resistance against Penicillin after 18 hrs of incubation. T. erecta and A. blanchetii were able to inhibit growth of X. oryzae and both inhibited B. subtilis. Conclusion: Pigments from both T. erecta and A. blanchetii are good pH indicators; however, T. erecta is a better antibacterial agent than A. blanchetii because it has broad-spectrum activities against bacteria.

References

Afolabi, O., Amoussa, R., Bilé, M., Oludare, A., Gbogbo, V., Poulin, L., . . . Silué, D. (2016). First report of bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae in Benin. Plant Disease, 100(2), 515-515. DOI:10.1094/PDIS-07-15-0821-PDN

Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720-1731. DOI:10.4161/psb.6.11.17613

Andersen, Ø. M., & Jordheim, M. (2010). Anthocyanins. eLS. Chichester: JohnWiley & Sons DOI:10.1002/9780470015902.a0001909.pub2

Archetti, M., Döring, T. F., Hagen, S. B., Hughes, N. M., Leather, S. R., Lee, D. W., . . . Schaberg, P. G. (2009). Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends in ecology & evolution, 24(3), 166-173. DOI:10.1016/j.tree.2008.10.006

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42. DOI:10.1038/nrmicro3380

Coomber, A. (2018). Wound dressing materials incorporating anthocyanins derived from fruit or vegetable sources: US Patent App. 15/830,188. Washington, DC: U.S. Patent and Trademark Office.
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564-582. DOI:10.1128/CMR.12.4.564

Forster, M. (1978). Plant pigments as acid-base indicators-An exercise for the junior high school. Journal of Chemical Education, 55(2), 107. DOI:10.1021/ed055p107

Gao, R., Hu, Y., Li, Z., Sun, J., Wang, Q., Lin, J., . . . Li, D. (2016). Dissemination and mechanism for the MCR-1 colistin resistance. PLoS pathogens, 12(11), e1005957. DOI:10.1371/journal.ppat.1005957

Geissman, T. (1955). Anthocyanins, chalcones, aurones, flavones and related water-soluble plant pigments Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis (pp. 450-498): Springer. DOI:10.1007/978-3-642-64958-5_12

Genskowsky, E., Puente, L. A., Pérez‐Álvarez, J. A., Fernández‐López, J., Muñoz, L. A., & Viuda‐Martos, M. (2016). Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensi s (Molina) Stuntz] a Chilean blackberry. Journal of the Science of Food and Agriculture, 96(12), 4235-4242. DOI:10.1002/jsfa.7628

Hahn, F. E. (2012). Mechanism of action of antibacterial agents. Berlin, Germany: Springer Science & Business Media.

Hugo, W. (1967). The mode of action of antibacterial agents. Journal of Applied Microbiology, 30(1), 17-50.

Jeeva, S., Johnson, M., Aparna, J., & Irudayaraj, V. (2011). Preliminary phytochemical and antibacterial studies on flowers of selected medicinal plants. International Journal of Medicinal and Aromatic Plants, 1(2), 107-114.

Jenifer, S., Priya, S., Laveena, D. K., Singh, S. J. S., & Jeyasree, J. (2014). Sensitivity patterns of some flowering plants against Salmonella typhi and Pseudomonas aeruginosa. Journal of Pharmaceutical Sciences, 3, 1212-1220.

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, 61(1), 1361779. DOIi:10.1080/16546628.2017.1361779

Kini, K., Agnimonhan, R., Afolabi, O., Milan, B., Soglonou, B., Gbogbo, V., . . . Silué, D. (2017). First report of a new bacterial leaf blight of rice caused by Pantoea ananatis and Pantoea stewartii in Benin. Plant Disease, 101(1), 242-242. DOI:10.1094/PDIS-06-16-0939-PDN

Koes, R., Verweij, W., & Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in plant science, 10(5), 236-242. DOI:10.1016/j.tplants.2005.03.002

Kosai, P., Jiraungkoorskul, K., & Jiraungkoorskul, W. (2015). Review of antidiabetic activity of “Rang Jeud” Thunbergia laurifolia. Journal of Applied Pharmaceutical Science, 5, 99-103.

Lang, J. M., Hamilton, J. P., Diaz, M. G. Q., Van Sluys, M. A., Burgos, M. R. G., Vera Cruz, C. M., . . . Leach, J. E. (2010). Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Disease, 94(3), 311-319. DOI:10.1094/PDIS-94-3-0311

Lee, H., Hong, J., & Kim, S. (2010). First report of leaf blight caused by Pantoea agglomerans on rice in Korea. Plant Disease, 94(11), 1372-1372. DOI:10.1094/PDIS-05-10-0374

Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., . . . Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of Agricultural and Food Chemistry, 57(15), 6570-6577. DOI:10.1021/jf9012295

Michaelis, L., Schubert, M. P., & Smythe, C. (1936). Potentiometric study of the flavins. Journal of Biological Chemistry, 116, 587-607.

Neilson, E. H., Goodger, J. Q., Woodrow, I. E., & Møller, B. L. (2013). Plant chemical defense: at what cost? Trends in plant science, 18(5), 250-258. DOI:10.1016/j.tplants.2013.01.001

Pichersky, E., & Gang, D. R. (2000). Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in plant science, 5(10), 439-445. DOI:10.1016/S1360-1385(00)01741-6

Salzberg, S. L., Sommer, D. D., Schatz, M. C., Phillippy, A. M., Rabinowicz, P. D., Tsuge, S., . . . Kelley, D. (2008). Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99 A. BMC genomics, 9(1), 204. DOI:10.1186/1471-2164-9-204

Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nature Reviews Microbiology, 13(10), 605. DOI:10.1038/nrmicro3525

Sharifabad, A. N., & Bahrami, S. H. (2016). Halochromic Chemosensor From Poly (acrylonitrile)/Phenolphthalein Nanofibers as pH Sensor. IEEE Sensors Journal, 16(4), 873-880. DOI:10.1109/JSEN.2015.2495338

Sultana, K., Chatterjee, S., Roy, A., & Chandra, I. (2015). An Overview on Ethnopharmacological and Phytochemical properties of Thunbergia sp. Med Aromat Plants, 4(217), 2167-0412.100021.

Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. American journal of infection control, 34(5), S3-S10. DOI:10.1016/j.ajic.2006.05.219

Tuturica, M., Oancea, A., Râpeanu, G., & Bahrim, G. (2015). Anthocyanins: naturally occuring fruit pigments with functional properties. Annals of the University Dunarea de Jos of Galati Fascicle VI--Food Technology, 39(1), 9-24,

Wink, M. (1988). Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and applied genetics, 75(2), 225-233. DOI:10.1007/BF00303957

Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64(1), 3-19. DOI:10.1016/S0031-9422(03)00300-5

Wink, M., & Mohamed, G. I. (2003). Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochemical Systematics and Ecology, 31(8), 897-917. DOI:10.1016/S0305-1978(03)00085-1

Wise, E. M., & Park, J. T. (1965). Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proceedings of the National Academy of Sciences, 54(1), 75-81. DOI:10.1073/pnas.54.1.75

Published

2019-12-01

How to Cite

Kusimo, M. O., Ukoha, H. ., Oludare, A. ., Afolabi, O., & Agwae, M. . (2019). Halochromic properties and antimicrobial potential of crude extracts from five species of ornamental plants. UNED Research Journal, 11(3), 283–291. https://doi.org/10.22458/urj.v11i3.2586

Issue

Section

Articles
Loading...