Groundwater management in an agro-industrial school in Argentina

Groundwater management in an agro-industrial school in Argentina

Authors

  • Evelyn Vuksinic Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Catamarca-La Rioja. Estación Experimental Agropecuaria Chilecito. Argentina
  • Corina Iris Rodríguez Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigaciones y Estudios Ambientales (CINEA), 7000, Tandil, Buenos Aires, Argentina
  • Anahí Tabera Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Facultad de Ciencias Veterinarias, Laboratorio de Calidad de los Alimentos, 7000, Tandil, Buenos Aires, Argentina
  • Marisol Roxana Cifuentes Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigaciones y Estudios Ambientales (CINEA), 7000, Tandil, Buenos Aires, Argentina
  • Adriana Alejandra Díaz Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigaciones y Estudios Ambientales (CINEA), 7000, Tandil, Buenos Aires, Argentina
  • Nicolás Eloy Cisneros Basualdo Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigaciones y Estudios Ambientales (CINEA), 7000, Tandil, Buenos Aires, Argentina
  • Alejandro Ruiz de Galarreta Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN), Centro de Investigaciones y Estudios Ambientales (CINEA), 7000, Tandil, Buenos Aires, Argentina

DOI:

https://doi.org/10.22458/urj.v11i2.2300

Keywords:

water quality, groundwater, effluent, agriculture, industry

Abstract

Introduction: water management is of paramount importance in productive activities, such as agriculture, livestock and industry, due to its direct impact on both the quality and the availability of this valuable resource. However, groundwater management is usually addressed under a non-integrated approach which originates a high risk of pollution as well as water shortage for food and animal production in the agro-industrial systems. Objective: to analyze water quality for human consumption, hydrogeological features, water demand, and discharge of liquid effluents on soil and surface water. Methods: we carried out a diagnostics of water management in an agro-industrial school located in Buenos Aires province, Argentina. The production system includes a bovine dairy farm; calf, pork and rabbit breeding; beekeeping; poultry farming; dairy and cheese factory; agriculture and fodder area; processing of meat, and orchard. To perform the analysis, we calculated water requirements for six productive activities and evaluated the hydrological features of the area through water table measurements considering the groundwater flow sense. We analyzed the groundwater quality seasonally during a period of a year through five water samples. We considered microbiological and physicochemical parameters and they were compared with recommended level by law, and we carried out the monitoring of residual chlorine during a week. Also, we evaluated the generation and disposal of effluents. Results: water was suitable for human consumption, although we detected variations in its quality indicators. We determined that the main issues hindering an integrated water management were the diversified production developed with high volumes of water demanded, the water quality deterioration by the agro-industrial productions carried out, and the hydrogeological features of the area. In addition, we measured a high water demand which is in conflict with groundwater shortage and the complex hydrological conditions of extraction in the studied area. Conclusion: this study demonstrated the usefulness of applying effective strategies to act on environmental-priority subjects and to develop good practices regarding water management from an integrated approach.

References

Alarcón, G.C., Camacho, J.C., & Gallego, J. (2005). Manual de Producción de Cerdos. Retrieved from http://www.ciap.org.ar/ciap/Sitio/Materiales/Produccion/Aspectos%20productivos/14960672-Manual-de-Produccion-Cerdos.pdf

Almeyda, M.J. (2013). Manual de Manejo y Alimentos de Vacuno: Recría de Animales de Reemplazo en Sistemas Intensivos. Retrieved from http://www.produccion-animal.com.ar/produccion_bovina_de_leche/produccion_bovina_leche/134-Manual_manejo_1.pdf

APHA (American Public Health Association). (2012). Standard Methods for the Examination of Water and Wastewater (22th ed). Washington, D.C.: APHA/AWWA/WEF.

Argentinean Alimentary Code. (2012). Capítulo XII: Bebidas hídricas, agua y agua gasificada. Ley 18.284. Argentina. Retrieved from http://www.anmat.gov.ar/alimentos/codigoa/CAPITULO_XII.pdf

Barron, J., & Noel, S. (2011). Valuing soft components in agricultural water management interventions in meso-scale watersheds: A review and synthesis. Water Alternatives, 4(2), 145-154.

De Bruin, A., Mikhail, M., Noel S., & Barron, J. (2010). AWM Interventions and Monitoring and Evaluation: Potential Approaches at the Watershed Level (Project Report-2009). Sweden: Stockholm Environment Institute.

De Bruin, A., Pateman, R., Barron, J., Balima, M., Ouedraogo, I., Da Dapola, E., … Kileshye, J.M. (2015). Setting up agricultural water management interventions - learning from successful case studies in the Volta and Limpopo river basins. Water Resources and Rural Development, 6, 12-23. DOI: 10.1016/j.wrr.2015.09.001

Douxchamps, S., Ayantunde, A., Panyan, E.K., Ouattara, K., Kaboré, A., Karbo, N., & Sawadogo, B. (2015). Agricultural water management and livelihoods in the crop-livestock systems of the Volta Basin. Water Resources and Rural Development, 6, 92-104. DOI: 10.1016/j.wrr.2014.10.001

GWP (Global Water Partnership). (2000). Integrated Water Resources Management. TAC Background Papers Nº 4. Stockholm, Sweden. Retrieved from http://www.gwpforum.org/gwp/library/TACNO4.PDF

FAO (Food and Agriculture Organization). (2006). Farmer field schools on land and water management: An extension approach that works. (Workshop on Jinja, 24-28 April 2006). FAO Pilot Project on Land and Water Management through Farmer Field Schools. Retrieved from http://www.fao.org/ag/agl

FAO (Food and Agriculture Organization). (2014). Farmer Field Schools: Key Practices for DRR Implementers. Retrieved from http://www.fao.org/3/a-i3766e.pdf

Foster, S.S.D., & Grey, D.R.C. (1997). Groundwater resources: balancing perspectives on key issues affecting supply and demand. Water and Environment Journal, 11(3), 193-199. DOI: 10.1111/j.1747-6593.1997.tb00115.x

Foster, S., Hirata, R., Gomes, D., D´Elia, M., & Paris M. (2002). Protección de la calidad del agua subterránea. Guía para empresas de agua, autoridades municipales y agencias ambientales. Washington, D.C.: Banco Mundial.

Hernández, M., Giaconi, L., & González, N. (2002). Línea de base ambiental para las aguas subterráneas y superficiales en el área minera de Tandilia. Buenos Aires. Argentina. In E. Bocanegra, D. Martínez, & H. Massone (Eds.), Congreso Internacional XXXII IAH & VI ALHSUD Aguas Subterráneas y Desarrollo Humano. Mar del Plata, Argentina: Groundwater and Human Development.

IHLla (Instituto de Hidrología de Llanuras). (2015). Estudio hidrogeológico en la Unidad Académica ‘Dr. Ramón Santamarina’, Tandil. Tandil: Universidad Nacional del Centro de la Provincia de Buenos Aires.

IWMI (International Water Management Institute). (2007). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London, England: Earthscan.

Mujica C., Cirone, E., Vuksinic E., & Provenzal, P. (2015). Auditoría ambiental diagnóstica en sectores productivos en instituto educativo agropecuario del partido de Tandil. 5º Congreso de Ciencias Ambientales COPIME 2015. Buenos Aires, Argentina.

Pessolano, B., Ruiz de Galarreta, V. A., Varni, M., Barranquero R., & Larsen, A. (2012). Diagnóstico preliminar del recurso hídrico subterráneo y su relación con las actividades agropecuarias en la cuenca del arroyo Chapaleofú Chico, Tandil, Buenos Aires, Argentina. 1er Encuentro de Investigadores en Formación en Recursos Hídricos. Ezeiza, Argentina.

Rodríguez, C.I., Banda Noriega, R., Ruiz de Galarreta, A., Díaz, A., Donalisio, R., Villalba, L., … Suárez, M. (2015). Proyecto de extensión sobre el manejo del agua en un establecimiento educativo agrario. XXV Congreso Nacional del Agua CONAGUA 2015. Paraná, Argentina.

Rodríguez, C.I., Cifuentes, M., Cisneros, N., Banda Noriega, R., Ruiz de Galarreta, A., Tabera, A., … Díaz, A. (2014). Diagnóstico ambiental participativo para la gestión del agua en una Escuela Agraria. II Jornadas Nacionales de Agua y Educación. Santa Fe, Argentina.

Ruiz de Galarreta., A., & Banda Noriega, R. (2005). Geohidrología y evaluación de nitratos del Partido de Tandil, Buenos Aires, Argentina. In M. Blarasin, A. Cabrera, & E. Matteoda (Eds.), IV Congreso Argentino de Hidrogeología. Río Cuarto, Argentina.

Vassallo, C. (2008). Manual para el Manejo de Efluentes de Tambo. Ministerio de Ganadería, Agricultura y Pesca. Uruguay. Retrieved from http://www.mgap.gub.uy/gxpfiles/mgap/content/audio/source0000000011/AUD0000070000002072.pdf

Vuksinic, E., Rodriguez, C.I., Tabera, A., & Ruiz de Galarreta, V.A. (2016). Diagnóstico preliminar de la gestión del agua en una Escuela Agrotécnica del partido de Tandil. I Jornadas Internacionales y III Nacionales de Ambiente. Tandil, Argentina.

Published

2019-06-17

How to Cite

Vuksinic, E., Rodríguez, C. I., Tabera, A., Cifuentes, M. R., Díaz, A. A., Cisneros Basualdo, N. E., & Ruiz de Galarreta, A. (2019). Groundwater management in an agro-industrial school in Argentina. UNED Research Journal, 11(2), 122–129. https://doi.org/10.22458/urj.v11i2.2300

Issue

Section

Articles
Loading...