Physicochemical characterization of Costa Rican pork shoulder
DOI:
https://doi.org/10.22458/urj.v16i1.5213Keywords:
Pork meat, Red meat, Quality, fatty acidsAbstract
Introduction: Pork meat offers high-quality nutrients, and in 2022, global pork production reached 125 million tons, with the highest demand in Asia. Considering some health implications of red meat, it is essential to characterize pork meat cuts, particularly in Costa Rica, where each person consumed a mean of 17kg in 2022. Objective: To physico-chemically characterize the pork shoulder cuts in Costa Rica. Materials and Methods: We collected samples of pork shoulder cuts, with an average weight of 2,5kg, selected randomly two days after slaughtering, and applied physico-chemical analyses Results: The samples had an average of crude protein of 20,7±1,6%, with a polyunsaturated fatty acids/saturated fatty acids (PUFA/SFA) ratio of 0,36 and low sodium content (0,056g/100g). The energy value of the pork shoulder cut reported in this research (139,6kcal/100g), classifies it as one of the lowest energy cuts of pork. Of total fat, 96.7%±0,2 was represented by six fatty acids: oleic, palmitic, stearic, linoleic, palmitoleic and myristic. The cutting force was 4,62kgf, and the color was characterized by a dark brown tone. Conclusion: Costa Rican pork shoulder stands out for its low energy value and high protein content, making it suitable for weight loss dietary plans.
References
Alvarenga, A. L. N., Sousa, R. V., Parreira, G. G., Chiarini-Garcia, H., & Almeida, F. R. C. L. (2014). Fatty acid profile, oxidative stability of pork lipids and meat quality indicators are not affected by birth weight. Animal, 8(4), 660-666.
American Meat Science Association. (2015). Research guidelines for cookery, sensory evaluation, and instrumental tenderness measurements of meat. https://tinyurl.com/2aovykpl
Australian Government. (2017). Lean Meat and poultry, fish, eggs, tofu, nuts and seeds and legumes/beans. https://tinyurl.com/p6nov5n
Brewer, M. S., Jensen, J., Sosnicki, A. A., Fields, B., Wilson, E., & McKeith, F. K. (2002). The effect of pig genetics on palatability, color and physical characteristics of fresh pork loin chops. Meat Science, 61(3), 249-256.
Chacón, A. (2005). Efecto de la maduración, cocción y congelamiento sobre la suavidad, rendimiento y carga microbiana del corte de solomo (outside). Agronomía Mesoamericana, 16(2), 199-213. https://tinyurl.com/24xfe6q3
Chen, J., & Liu, H. (2020). Nutritional indices for assessing fatty acids: A mini-review. International Journal of Molecular Sciences, 21(16), 5695.
Chen, L. H., Wang, Y. F., Xu, Q. H., & Chen, S. S. (2018). Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: A systematic review and meta-analysis of randomized controlled trials. Clinical nutrition, 37(2), 516-521.
Choe, J. H., Choi, M. H., Rhee, M. S., & Kim, B. C. (2016). Estimation of sensory pork loin tenderness using Warner-Bratzler shear force and texture profile analysis measurements. Asian-Australasian Journal of Animal Sciences, 29(7), 1029.
Flores, C., Leal, M., Rodas, A., Aranguren, J., Román, R., & Ruiz, J. (2009). Efecto de la condición sexual y pesos al sacrificio sobre las características de la canal y la calidad de la carne de cerdo. Revista Científica, 19(2), 165-172.
Food and Agriculture Organization of the United Nations (FAO). (2022). Meat Market Review: Emerging trends and outlook. https://tinyurl.com/2ao3ufb7
Food and Agriculture Organization of the United Nations (FAO). (2007). Etiquetado de los alimentos. https://www.fao.org/3/a1390s/a1390s.pdf
Food and Safety and Inspection Service (FSIS). (2023). Fresh pork from farm to table. https://tinyurl.com/22q46gjr
González, F., Chacón, A., & Pineda, M. L. (2023). Caracterización de carne de conejo marinada en mostaza y vino blanco con especias. Agronomía Mesoamericana, 34(3), 53343. https://doi.org/10.15517/am.2023.53343
Headey, D., Hirvonen, K., & Hoddinott, J. (2018). Animal sourced foods and child stunting. American Journal of Agricultural Economics, 100(5), 1302–19. https://doi.org/10.1093/ajae/aay053
Instituto de Nutrición de Centro América y Panamá (INCAP). (2007). TABLA de Composición de Alimentos de Centroamérica. https://tinyurl.com/29kxgsyq
Kim, J. H., Seong, P. N., Cho, S. H., Park, B. Y., Hah, K. H., Yu, L. H., & Ahn, C. N. (2008). Characterization of nutritional value for twenty-one pork muscles. Asian-Australasian Journal of Animal Sciences, 21(1), 138-143.
King, N. J., & Whyte, R. (2006). Does it look cooked? A review of factors that influence cooked meat color. Journal of food science, 71(4), R31-R40.
Langley, M. R., Triplet, E. M., & Scarisbrick, I. A. (2020). Dietary influence on central nervous system myelin production, injury, and regeneration. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(7), 165779.
Lawrie, R. A., & Ledward, D. A. (2006). Lawrie´s meat science. Woodhead Publishing Limited and CRC Press LLC.
Lebret, B., & Čandek-Potokar, M. (2022). Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal, 16(Suppl. 1), 100402. https://tinyurl.com/2ctdvsvk
Lukac, D., Vidovic, V., Stoisavljevic, A., Puvaca, N., Dzinic, N., & Tomovic, V. (2015). Basic chemical composition of meat and carcass quality of fattening hybrids with different slaughter weight. Hemijska industrija, 69(2), 121–126.
Migdał, W., Różycki, M., Mucha, A., Tyra, M., Natonek-Wiśniewska, M., Walczycka, M., Piotr, K., Ewilina, W., Marzena, Z., Tkaczewska, J., Migdal, L., & Krępa-Stefanik, K. (2020). Meat texture profile and cutting strength analyses of pork depending on breed and age. Annals of Animal Science, 20(2), 677-692. https://doi.org/10.2478/aoas-2019-0085
Miller, R. (2020). Drivers of consumer liking for beef, pork, and lamb: A review. Foods, 9(4), 428.
Murphy, K., Thomson, R., Coates, A., Buckley, J., & Howe, P. (2012). Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients, 4(7), 711-723.
Organización para la Cooperación y el Desarrollo Económico-Food and Agriculture Organization (OCDE-FAO). (2017). Perspectivas agrícolas 2017-2026. https://tinyurl.com/25chj294
Onega, E. (2003). Evaluación de la calidad de carnes frescas: aplicación de técnicas analíticas, instrumentales y sensoriales [Doctoral dissertation, Universidad Complutense de Madrid].
O’Quinn, T. G., Legako, J. F., Brooks, J. C., & Miller, M. F. (2018). Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. Translational Animal Science, 2(1), 26-36.
Parlasca, M. C., & Qaim, M. (2022). Meat consumption and sustainability. Annual Review of Resource Economics, 14, 17-41. https://doi.org/10.1146/annurev-resource-111820-032340
Realini, C. E., Pérez-Juan, M., Gou, P., Díaz, I., Sárraga, C., Gatellier, P., & García-Regueiro, J. A. (2013). Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 2. Composition of muscles. Meat Science, 94(3), 417-423.
Reig, M., Aristoy, M.C., & Toldrá, F. (2013). Variability in the contents of pork meat nutrients and how it may affect food composition databases. Food Chemestry, 140(3), 478-482. https://doi.org/10.1016/j.foodchem.2012.11.085
Restrepo, B., & Rieger, M. (2016). Denmark's Policy on Artificial Trans Fat and Cardiovascular Disease. American journal of preventive medicine, 50(1), 69-76. https://doi.org/10.1016/j.amepre.2015.06.018
Sánchez, J., Orozco, H., & Vega, X. (2020). Prejuicios, mitos y bondades de la carne de cerdo. Universitarios Potosinnos, 17(249), 30-35.
Schwob, S., Lebret, B., & Louveau, I. (2020). Genetics and adiposity in pigs: state of the art and new challenges for meat product quality. INRAE Productions Animales, 33(1), 17-30. https://doi.org/m8t9
Secretaría Ejecutiva de Planificación Sectorial Agropecuaria (SEPSA). (2022). Indicadores Macroeconómicos 2018-2022. https://tinyurl.com/26vb5267
Sistema de Información de Mercados (SIM). (2022). Análisis y Monitoreo de Mercados-Porcinos. Boletín N°1. https://tinyurl.com/2aucuqz6
Williams, N., Melody, J., Klont, R., Emnett-Miculinich, R., Pommier, S., Wilson, E., Fields, B., Sosnicki, A., & Carrion, D. (2005). Influencia de la genética y la alimentación en el sabor de la carne de cerdo. Avances en nutrición y alimentación animal. https://fundacionfedna.org/sites/default/files/05CAP_III.pdf
Wu, H., Xu, L., & Ballantyne, C. M. (2020). Dietary and pharmacological fatty acids and cardiovascular health. The Journal of Clinical Endocrinology & Metabolism, 105(4), 1030-1045.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.