Characterization of lactic acid bacteria isolated from two samples of biole-type bio-inputs with the production capacity of indolic compounds
DOI:
https://doi.org/10.22458/urj.v16i1.5160Keywords:
microbiota, biotechnology, sustainability, crops, farmersAbstract
Introduction: Modern agriculture seeks to improve sustainability and reduce environmental impact, while meeting the nutritional needs of current and future generations. A promising strategy is the use of microbial biostimulants to increase crop yields and decrease dependence on agrochemicals and fertilizers. Among these biostimulants, those that use beneficial microorganisms such as plant growth-promoting bacteria stand out. We focused this study on isolating and identifying lactic acid bacteria present in artisanal bioles, and characterizing them by their ability to produce indolic compounds. The findings suggest that some lactic acid bacteria present in the two bioles samples can act as producers of indole compounds, such as 3-indoleacetic acid, which makes them a promising alternative for more sustainable and environmentally friendly agricultural practices. Objective: Isolate and identify lactic acid bacteria present in two samples of artisanal biole, and characterize them by their growth and their ability to produce indolic compounds. Methods: We use molecular techniques such as 16S rRNA gene analysis and multilocus typing sequencing analysis to identify strains of lactic acid bacteria present in artisanal biole. Subsequently, we characterized the isolated strains using growth kinetics and colorimetric tests for the detection of indolic compounds, and the quantification of said compounds using high-efficiency liquid chromatography (HPLC). Results: We identified three different genera of lactic acid bacteria species which were Lacticaseibacillus paracasei, Lactiplantibacillus sp., and Lacticaseibacillus pantheris. Lactiplantibacillus sp. stood out for their ability to produce 3-indoleacetic acid. (M2) and Lacticaseibacillus paracasei (M4) with a concentration of 16,75 µg/mL and 4,57 µg/mL, respectively. Conclusion: Our results suggest that some lactic acid bacteria present in artisanal bioles can act as producers of indolic compounds such as 3-indoleacetic acid, which makes them a promising alternative for more sustainable and environmentally friendly agricultural practices.
References
Abad, M. E. (2021). Aislamiento e identificación de bacterias endófitas productoras de ácido indolacético a partir de plantas de lenteja de agua del género Spirodela. [Tesis de Ingeniería, Universidad de las Fuerzas Armadas]. https://repositorio.catie.ac.cr/handle/11554/3123
Ahmad, F., Ahmad, I., & Khan, M. S. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29(1), 29-34. https://journals.tubitak.gov.tr/biology/vol29/iss1/5
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Borris, R., Fan, B., Wang, C., Song, X., Ding, X, Wu, L., Wu, H., Gao, X. (2018). Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Frontier, Microbiology, 9, 2491. https://doi.org/10.3389/fmicb.2018.02491
Bric, J., Bostock, R. & Silverstone, S. (1991). Rapid in Situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied environmental microbiology, 57(2), 535-538. https://tinyurl.com/22kxzrz3
Castillo, G., Altuna, B., Michelena, G., Sánchez-Bravo, J., Acosta, M., & Acosta, C. M. (2005). Cuantificación del contenido de ácido indolacético (AIA) en un caldo de fermentación microbiana. Anales de Biología, 27, 137-142.
Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669–678. https://doi.org/10.1016/j.soilbio.2009.11.024
Dong, C., Wang, G., Du, M., Niu, C., Zhang, P., Zhang, X., Ma, D., Ma, F., & Bao, Z. (2020). Biostimulants promote plant vigor of tomato and strawberry after transplanting. Scientia Horticulturae, 267, 109355. https://doi.org/10.1016/j.scienta.2020.109355
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Ehman, A. (1977). The Van URK-Salkowski reagent — a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A, 132(7746), 267–276.
Fernández. S. (2022). Caracterización de bacterias ácido lácticas (BAL) para la producción de ácido láctico (AL) a escala de planta piloto. [Tesis de Licenciatura, Universidad de Costa Rica]. https://tinyurl.com/2bjsw7e9
Fonseca-Carreño, N. E., Salamanca-Merchan, J. D., & Vega-Baquero, Z. Y. (2019). La agricultura familiar agroecológica, una estrategia de desarrollo rural incluyente. Una revisión. Revista Temas Agrarios, 24(2), 96–107.
Giassi, V., Kiritani, C., & Kupper, K. C. (2016). Bacteria as growth-promoting agents for citrus rootstocks. Microbiological Research, 190, 46–54. https://doi.org/10.1016/j.micres.2015.12.006
Glick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 1–15. https://doi.org/10.6064/2012/963401
Goswami, M., & Deka, S. (2020). Plant growth-promoting rhizobacteria alleviators of abiotic stresses in soil: A review. Pedosphere, 30(1), 40-61. https://doi.org/10.1016/S1002-0160(19)60839-8
Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27(5), 1231–1240. https://doi.org/10.1007/s11274-010-0572-7
Guerrero, J. G., (2022). Efectos del biol en el cultivo de melón (Cucumis melo L.) y su impacto en el rendimiento. [Tesis de Ingeniería, Universidad Técnica de Babahoyo]. http://dspace.utb.edu.ec/handle/49000/13284
Hall, T. A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Kang, S. M., Radhakrishnan, R., You, Y. H., Khan, A. L., Park, J. M., Lee, S. M., & Lee, I. J. (2015). Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agriculture Scandinavica Section B: Soil and Plant Science, 65(1), 36–44. https://doi.org/10.1080/09064710.2014.960889
Khalid, A., Arshad, M., & Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96(3), 473–480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
Keswani, C., Singh, S. P., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Singh, S. P., Blázquez, M. A., & Sansinenea, E. (2020). Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 104(20), 549–8565. https://doi.org/10.1007/s00253-020-10890-8
Linares-Gabriel, A., López-Collado, C. J., Tinoco-Alfaro, C. A., Velasco-Velasco, J., & López-Romero, G. (2017). Application of biol, inorganic fertilizer and superabsorbent polymers in the growth of heliconia (Heliconia psittacorum cv. Tropica). Revista Chapingo Serie Horticultura, 23(1), 35–48. https://doi.org/10.5154/r.rchsh.2016.02.004
Mantilla, M. E. (2007). Evaluación de la acción de un bioinoculante sobre un cultivo de crisantemo (Chrysabthemum morifolium var. yoko ono) en periodo de enraizamiento. [Tesis Grado, Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/8381
Mazid, M., & Khan, T. A. (2014). Future of Bio-fertilizers in Indian Agriculture: An Overview. International Journal of Agricultural and Food Research, 3(3), 10–23. https://doi.org/10.24102/ijafr.v3i3.132
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649. https://doi.org/10.4067/S0718-95162013005000051
Montero-Zamora, J., Cortés-Muñoz, M., Esquivel, P., Mora-Villalobos, J. A., & Velázquez, C. (2020). Growth conditions and survival kinetics during storage of Lactobacillus rhamnosus GG for the design of a sustainable probiotic whey-based beverage containing Costa Rican guava fruit pulp. Journal of Food Science, 85(10), 3478–3486. https://doi.org/10.1111/1750-3841.15430
Mora‐Villalobos, J. A., Montero‐Zamora, J., Barboza, N., Rojas‐Garbanzo, C., Usaga, J., Redondo‐Solano, M., Schroedter, L., Olszewska‐Widdrat, A., & López‐Gómez, J. P. (2020). Multi‐product lactic acid bacteria fermentations: A review. Fermentation, 6(1), 23. https://doi.org/10.3390/fermentation6010023
Muñiz, C. A., (2023). Beneficios del biol en el cultivo de pepino (Cucumis sativus). [Tesis de Ingeniería, Universidad Técnica de Babahoyo]. http://dspace.utb.edu.ec/handle/49000/14100?show=full
Murthy, K. N., Malini, M., Savitha, J., & Srinivas, C., (2013). Lactic acid bacteria (LAB) as plant growth promoting bacteria (PGPB) for the control of wilt of tomato caused by Ralstonia solanacearum. Pest Manag. Hort. Ecosyst. 18, 60–65.
Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 21, 101326. https://doi.org/10.1016/j.bcab.2019.101326
Nguyen-Sy, T., Yew, G. Y., Chew, K. W., Nguyen, T. D. P., Tran, T. N. T., & Le, T. D. H. (2020). Potential cultivation of Lactobacillus pentosus from human breastmilk with rapid monitoring through the spectrophotometer method. Processes, 8(8), 1–9. https://doi.org/10.3390/pr8080902
Panetto, L. D., Doria, J., Santos, C. H. B., Frezarin, E. T., Sales, L. R., de Andrade, L. A., & Rigobelo, E. C. (2023). Lactic bacteria with Plant-Growth-Promoting properties in potato. Microbiology Research, 14(1), 279–288. https://doi.org/10.3390/microbiolres14010022
Rahmoune, B., Morsli, A., Khelifi-Slaoui, M., Khelifi, L., Strueh, A., Erban, A., Kopka, J., Prell, J., & Van Dongen, J. T. (2017). Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. Journal of Plant Interactions, 12(1), 1–6. https://doi.org/10.1080/17429145.2016.1269215
Raman, J., Kim, J., Choi. K. R., Eun, H., Yang, D., Ko, Y., & Kim, S. (2022). Application of Lactic Acid Bacteria (LAB) in sustainable agriculture: Advantages and limitations. International Journal of Molecular Sciences, 23(14), 7784. https://doi.org/10.3390/ijms23147784.
Restrepo, J. (2007). Manual práctico. El A, B, C de la agricultura orgánica y harina de rocas. Printex. https://tinyurl.com/2b7jscgr
Shrestha, A., Kim, B. S., & Park, D. H. (2014). Biocontrol science and technology biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology, 37–41. https://doi.org/10.1080/09583157.2014.894495
Solís-Oba, M. M., Castro-Rivera, R., Villegas-Luna, A., Cruz-Murillo, A., Solís-Oba, A., Castro-Ramos, J. J., Romero-Rodríguez, A., Juárez-Rangel, A. P., Pacheco-Ortiz, J. A., & Aguilar-Benítez, G. (2021). Evaluación de biol, bocashi, composta y vermicomposta en las variables morfológicas del cultivo de espinaca (Spinacia oleracea L.). Brazilian Journal of Animal and Environmental Research, 4(3), 3649–3662. https://doi.org/10.34188/bjaerv4n3-070
Suliasih, & Widawati, S. (2020). Isolation of indole acetic acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. IOP Conference Series: Earth and Environmental Science, 572(1). https://doi.org/10.1088/1755-1315/572/1/012025
Szkop, M., & Bielawski, W. (2013) A simple method for simultaneous RP-HPLC. Determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid. Antonie van Leeuwenhoek, 103, 683-691. https://doi.org/10.1007/s10482-012-9838-4
Tamura, K., Stecher, G., & Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38, 3022-3027. https://doi.org/10.1093/molbev/msab120
Turaeva, B. I., Fo qizi, K. K., Soliev, A. B., y Kutlieva, G. J. (2022). Gibberellic and indole acetic acids producing features of bacteria from the genus Lactobacillus and their effect on plant development. Asian Journal of Biological and Life Sciences, 10(3), 681–686. https://tinyurl.com/2b2wh9sl
Vélez. J., Gutiérrez, L. A., & Montoya, O. (2015). Identificación molecular y evaluación de la capacidad probiótica de bacterias ácido lácticas aisladas del calostro de cerdas. CES Medicina veterinaria y zootecnia, 10(2), 141-149.
WingChing, R., Redondo, M., Usaga, J., Uribe, L., & Barboza, N. (2021). Tipificación con secuencias multilocus en Lactobacillus casei procedentes de ensilados de cáscara de piña. Agronomía Mesoamericana, 32(2), 508–522. https://doi.org/10.15517/am.v32i2.42182
Xiu, P. (2018). Efectos de bioles en brócoli (Brassica oleracea) y lechuga (Lactuca sativa) en la zona hortícola de Cartago, Costa Rica. [Tesis de Maestría, Centro Agronómico Tropical de Investigación y Enseñanza]. Repositorio CATIE.
Zagoya, J. (2013) Evaluación de biofertilizantes y factores para su innovación con productores de maíz en San Felipe Teotlalcingo, Puebla. [Tesis de Maestría en Ciencias. Instituto de Enseñanza e Investigación en Ciencias Agrícolas, Campus Puebla (COLPOS)]. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/2206
Zanabria, J. I. (2019). Evaluación de la calidad de biol de segunda y tercera generación de estiércol de cuy producido en un biodigestor instalado en el instituto regional de la costa de la UNALM. [Tesis de Ingeniería, Universidad Nacional Agraria]. https://tinyurl.com/23hhjy8n
Zúñiga. O. M. (2009). Crecimiento de Bacillus pumilus productor de la auxina ácido indolacético, como base para formular biofertilizante en polvo. [Tesis de Ingeniería, Universidad Austral de Chile]. http://colposdigital.colpos.mx:8080/xmlui/handle/10521/2206
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.