Comparison of indicator microorganisms in conventional or hydroponic tomato production systems

Comparison of indicator microorganisms in conventional or hydroponic tomato production systems

Authors

  • Viviana Wittmann Vega Universidad de Costa Rica, Escuela de Tecnología de Alimentos, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, San José, Costa Rica https://orcid.org/0000-0001-8096-3824
  • Gabriela Davidovich-Young Universidad de Costa Rica, Escuela de Tecnología de Alimentos, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, San José, Costa Rica https://orcid.org/0000-0001-6221-4141
  • Eric Wong-González Universidad de Costa Rica, Escuela de Tecnología de Alimentos, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, San José, Costa Rica https://orcid.org/0000-0001-9054-130X
  • Manuel Montero Barrantes Universidad de Costa Rica, Centro Nacional de Ciencia y Tecnología de Alimentos, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, San José, Costa Rica https://orcid.org/0000-0003-4376-4644

DOI:

https://doi.org/10.22458/urj.v15i2.4831

Keywords:

microbiological quality, Escherichia coli, Listeria monocytogenes, bacteria, yeast, molds

Abstract

Introduction: Consumption of fresh tomatoes has increased over the years and production systems (conventional or hydroponic), harvest and post-harvest practices, irrigation water and harvest containers, can affect the microbiological quality of the final product. Objective: To compare the microbiological quality of the cultivated or harvested fruit, the irrigation water, and the harvest containers in two tomato production farms (conventional and hydroponic). Methods: We carried out three sampling visits in each farm (repetitions), taking, in each repetition, 3 tomatoes of each type (composite sample), 50 ml of irrigation water and swabbing 50cm2 of the surface of three harvest containers (composite sample). We determined indicator microorganisms such as total aerobic mesophilic count, mold and yeast count, total coliforms, thermotolerant coliforms and E. coli. Presence of Listeria monocytogenes was also analyzed in fruits. We applied student's t-tests at a significance level of 5%. Results: Total aerobic mesophilic and mold and yeast counts of hydroponic tomato were significantly lower than in conventional tomato, while no difference in total coliform counts and E. coli was detected. L. monocytogenes was absent in all samples. The total aerobic mesophilic count was higher in the harvest containers of the conventional farm. In both farms, irrigation water was not considered a source of contamination since it had very low levels of total coliforms, thermotolerant coliforms, and E. coli. Finally, an adequate control during harvesting was presumed, having found no difference in the microbiological indicators between the cultivated and harvested tomato. Conclusion: Hydroponic tomatoes are more likely to have a better microbiological profile and longer shelf life compared to conventionally grown tomatoes, evidencing the importance of environmental control and cleaning and disinfection of all elements used in the farming, harvesting and postharvest processes.

References

Adams, M. R., Moss, M. O., & McClure, P. (2016). Food Microbiology. The Royal Society of Chemistry.

Al-Zenki, S.F., Al‐Mazeedi, H.M., Al-Hooti, S.N., Al-Ati, T., Almatawah, Q.A., Alomirah, H.F., & Sidhu, J.S. (2008). Characterisation of quality and safety of tomatoes sold in the state of Kuwait. International Journal of Postharvest Technology and Innovation, 1(3), 298-311. https://doi.org/10.1504/IJPTI.2008.021464

Association of Official Agricultural Chemists (AOAC). (2005). Coliform and Escherichia coli counts in foods (AOAC official method 991.14). http://www.eoma.aoac.org/methods/info.asp?ID=46949

Baird, R., & Bridgewater, L. (2017). Standard methods for the examination of water and wastewater. American Public Health Association.

Beltrano, J., & Giménez, D. O. (2015). Cultivo en hidroponía. Editorial de la Universidad Nacional de La Plata (EDULP). https://doi.org/10.35537/10915/46752

Bolaños, S. E. (2002). Recuento microbiológico y presencia de enteropatógenos en vegetales cultivados y comercializados en el Área Metropolitana [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio Kerwa. https://hdl.handle.net/10669/16783

Buckley, D. H., Stahl, D. A., Martinko, J. M., Bender, K. S., & Madigan, M. T. (2015). Brock: Biología de los microorganismos. Pearson.

Cárdenas, M. D. C. (2012). Identificación de fuentes de contaminación durante la producción de tomate (Lycopersicon esculentum mill.) en el Estado de Nuevo León, México [Tesis de maestría, Universidad Autónoma de Nuevo León]. Colección digital UANL. https://cd.dgb.uanl.mx/handle/201504211/5113

Consejo Nacional de Producción (CNP). (2016). Tomate (Boletín N° 1). https://tinyurl.com/2cccvy9d

Consejo Nacional de Producción (CNP). (2022). Tomate. Servicios de Información de Mercados Costa Rica. https://tinyurl.com/2adp99ea

Costa, J. M., & Heuvelink, E. (2018). The Global Tomato Industry. In E. Heuvelink (Ed.), Tomatoes (pp. 1-26). CABI Digital Library. https://www.cabidigitallibrary.org/doi/epdf/10.1079/9781780641935.0001

De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60:(6), 940-975. https://doi.org/10.1080/10408398.2018.1553025

Decreto Ejecutivo N°41420. (2018). (COMIECO-LXXXIII) de fecha 28/06/2018 y su Anexo: "Reglamento Técnico Centroamericano RTCA 67.04.50:17 Alimentos. Criterios Microbiológicos para la Inocuidad de los Alimentos". Diario Oficial La Gaceta, 238. Del 21 de diciembre del 2018. Costa Rica. https://tinyurl.com/2chc5e4q

Desiree, K., Schwan, C. L., Ly, V., Hok, L., Bello, N. M., Nwadike, L., Phebus, R. K., & Vipham, J. L. (2020). Investigating Salmonella enterica, generic Escherichia coli (E. coli) and coliforms on fresh vegetables sold in informal markets in Cambodia. Journal of Food Protection, 184(5), 843-849. https://doi.org/10.4315/JFP-20-219

Durán-Quirós, A., González-Lutz, M. I., Mora-Acedo, D., & Vargas-Hernández, G. (2016). Evaluación de los riesgos de contaminación microbiológica en los sistemas hortícolas, Valle Central de Costa Rica. Agronomía costarricense, 40(2), 129-146. https://doi.org/10.15517/rac.v40i2.27393

Erkmen, O., & Bozoglu, T. F. (2016a). Spoilage of Vegetables and Fruits. In O. Erkmen (Ed.), Food Microbiology: Principles into Practice (pp. 337-363). John Wiley & Sons Incorporated. https://doi.org/10.1002/9781119237860.ch20

Erkmen, O., & Bozoglu, T. F. (2016b). Indicators of Foodborne Pathogens. In O. Erkmen (Ed.), Food Microbiology: Principles into Practice (pp. 223-230). John Wiley & Sons Incorporated. https://doi.org/10.1002/9781119237860.ch12

Fernández, E., & Peña, J. J. (2012). Riesgos microbianos en la producción de alimentos frescos en áreas urbanas y periurbanas de América Latina. https://tinyurl.com/2xhhxkr9

Food and Agriculture Organization (FAO). (2007). Producción de Tomate Bajos Condiciones Protegidas. http://www.fao.org/3/a1374s/a1374s00.htm

Food and Drug Administration (FDA). (2015). Standards for the growing, harvesting, packing, and holding of produce for human consumption. https://tinyurl.com/j3fkp2j

Food and Drug Administration. (2022). Bacteriological analytical manual. https://bit.ly/3MwMgtq

Gorris, L. G. M., & Cordier, J. L. (2019). Microbiological Criteria and Indicator Microorganisms. In Doyle, M. P., Diez-Gonzalez, F., & Hill, C. (Eds.), Food Microbiology: fundamentals and frontiers (pp. 65-77). ASM Press. https://doi.org/10.1128/9781555819972.ch3

Hernández, J. N. (2013). Caracterización físico-química y microbiológica del tomate margariteño (Lycopersicum esculentum var. España) y evaluación de la efectividad de tratamientos de pre-envasado para el incremento de su vida comercial a temperatura ambiente. [Tesis de doctorado, Universidad de Córdoba]. Helvia: Repositorio Institucional de la Universidad de Córdoba. http://hdl.handle.net/10396/9925

Hernández, J., Espinoza, Y., Malpica, L., & De Jesús, M. (2011). Calidad del agua de riego y parámetros microbiológicos y químicos del suelo de la zona agrícola de Barbacoas, estado Aragua. Revista Facultad Agronomía, 37(1), 1-10. http://saber.ucv.ve/ojs/index.php/rev_agro/article/view/4320/4137

International Commission on Microbiological Specifications for Foods (ICMSF). (2000). Microorganismos de los alimentos: Técnicas de análisis microbiológico. Editorial Acribia Zaragoza.

Khadka, R. B., Marasini, M., Rawal, R., Gautam, D. M., & Acedo, A. L. (2017). Effects of variety and postharvest handling practices on microbial population at different stages of the value chain of fresh tomato (Solanum lycopersicum) in Western Terai of Nepal. BioMed Research International, 2017, 7148076. https://doi.org/10.1155/2017/7148076

Khan, F. A. (2018). A review on hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture Environment and Food Sciences, 2(2), 59-66. https://doi.org/10.31015/jaefs.18010

Moberg L., & Kornacki, J. L. (2015). Microbial Monitoring of the Food Processing Environment. In Y. Salfinger, & L. Tortorello (Eds.) Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association. https://doi.org/10.2105/MBEF.0222.008

Ocaña de Jesús, R. L. (2018). Penetración y permanencia de Escherichia coli y Salmonella en plantas y frutos de tomate (Lycopersicum esculentum Mill). [Tesis de doctorado, Universidad Autónoma del Estado de México.] Red de Repositorios Latinoamericanos. http://ri.uaemex.mx/handle/20.500.11799/68749

Ocaña-de Jesús, R. L., Gutiérrez-Ibáñez, A. T., Sánchez-Pale, J. R., Mariezcurrena-Berasain, M. D., Velázquez-Garduño, G., Laguna Cerda, A., & Rojas Puebla, I. (2015). Calidad microbiológica del tomate (Solanum lycopersicum L.) producido bajo condiciones de invernáculo en 5 Municipios del Estado de México. Phyton, 84(1), 45-50. http://www.revistaphyton.fund-romuloraggio.org.ar/vol84-1/Ocania_De_Jesus.pdf

Pérez, M. A. (2014). Evaluación de la transferencia de Salmonella enterica en cajas de madera y plástico utilizadas en tomate (Solanum lycopersicum L.). [Tesis de Licenciatura, Escuela Agrícola Panamericana Zamorano.] Zamorano Biblioteca Wilson Popenoe. http://hdl.handle.net/11036/3372

Pérez, E., & Chávez, M. (2012). Frecuencia de Listeria monocytogenes en tomate, zanahoria, espinaca, lechuga y rabanito, expendidos en mercados de Trujillo, Perú. Revista Ciencia y Tecnología, 8(22), 11-21. https://revistas.unitru.edu.pe/index.php/PGM/article/view/183

Pérez, E., Barrera, M., Castelló, M. (2017). Métodos para la desinfección en la industria alimentaria. Universitat Politècnica de València. http://hdl.handle.net/10251/84175

Poder Ejecutivo Federal. (1995, octubre 10). Norma oficial mexicana NOM-093-SSA1-1994, bienes y servicios. Prácticas de higiene y sanidad en la preparación de alimentos que se ofrecen en establecimientos fijos. Secretaría de Gobernación. https://bit.ly/3yH1xSH

Presidencia de la República, Ministerio de Ambiente y Energía & Ministerio de Salud. (2007). Decreto Nº 33903. Reglamento para la Evaluación y Clasificación de la Calidad de Cuerpos de Agua Superficiales. La Gaceta N. 178. https://www.aya.go.cr/centroDocumetacion/catalogoGeneral/Reglamento%20 evaluaci%C3%B3n%20y%20 clasificaci%C3%B3n%20de%20calidad%20de%20cuerpos%20de%20agua%20superficiales.pdf

Prince-Guerra, J. L., Nace, M. E., Lyles, R. H., Fabiszewski de Aceituno, A. M., Bartz, F. E., Arbogast, J. W., Gentry-Shields, J., Jaykus, L. A., Heredia, N., García, S., & Leon, J. S. (2020). Both handwashing and an alcohol-based hand sanitizer intervention reduce soil and microbial contamination on farmworker hands during harvest, but produce type matters. Applied and Environmental Microbiology, 86(18), e00780-20. https://doi.org/10.1128/AEM.00780-20

Programa Integral de Mercadeo Agropecuario (PIMA). (2016). Análisis del consumo de frutas, hortalizas, pescado y mariscos en los hogares costarricenses. http://www.pima.go.cr/wp-content/uploads/2017/07/Analisis-Consumo.pdf

Ramírez, M., de Salim, A. M., Graterol, A. Y. A., & Gamboa, O. (2009). Frecuencia de Listeria monocytogenes en muestras de tomates (Lycopersicum esculentum) y cilantro (Coriandrum sativum) frescos en tres supermercados de Valencia. Archivos Latinoamericanos de Nutrición, 59(3), 318-324. https://tinyurl.com/yoe987u5

Rosati, A., Borek, R., & Canali, S. (2021). Agroforestry and organic agriculture. Agroforestry Systems, 95, 805–821. https://doi.org/10.1007/s10457-020-00559-6

Ryser, E., & Schuman, J. (2015). Mesophilic Aerobic Plate Count. In Y. Salfinger, & L. Tortorello (Eds.), Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association. https://doi.org/10.2105/MBEF.0222.013

Ryu, D., & Wolf-Hall, C. (2015). Yeasts and Molds. In Y. Salfinger, & L. Tortorello (Eds.), Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association.

Smith, A., Moorhouse, E., Monaghan, J., Taylor, C., & Singleton, I. (2018). Sources and survival of Listeria monocytogenes on fresh, leafy produce. Journal of Applied Microbiology, 125(4), 930-942. https://doi.org/10.1111/jam.14025

Stoeckel, D., Clements, D., Fisk, C., Wall, G., Woods, K., & Bihn, B. (2022). FSMA Produce Safety Rule Water Requirements: Insights to Get You Organized [Fact sheet]. Produce Safety Alliance. https://tinyurl.com/2buepf2p

Suslow, T. (2015). Minimizing Microbiological Risks in Multiple Use Containers. Food Safety and Quality Magazine: UC Davis. https://ucfoodsafety.ucdavis.edu/sites/g/files/dgvnsk7366/files/inline-files/212397.pdf

Vargas-Hernández, G., Durán-Quirós, A., González-Lutz, M. I., & Mora-Acedo, D. (2015). Perfil de riesgos de contaminación microbiológica y química en la cadena de producción de nueve productos hortícolas para consumo fresco, de un grupo de empresas agrícolas del Valle Central de Costa Rica. Agronomía Costarricense, 39(2), 105-120. https://www.redalyc.org/articulo.oa?id=43642603008

van Dyk, B. N., de Bruin, W., du Plessis, E. M., & Korsten, L. (2016). Microbiological food safety status of commercially produced tomatoes from production to marketing. Journal of Food Protection, 79(3), 392-406. https://doi.org/10.4315/0362-028X.JFP-15-300

Woods, K. L., Acuña-Maldonado, L., Clements, D. P., Fisk, C. L., Stoeckel, D. M., Wall, G. L., & Bihn, E. A. (2020). Produce Safety Alliance Train-the-Trainer Course: Developing Trainers to Support Fruit and Vegetable Growers. Food Protection Trends, 40(6), 435-449. https://tinyurl.com/226u7w58

Published

2023-10-28

How to Cite

Wittmann Vega, V., Davidovich-Young, G., Wong-González, E., & Montero Barrantes, M. (2023). Comparison of indicator microorganisms in conventional or hydroponic tomato production systems. UNED Research Journal, 15(2), e4831. https://doi.org/10.22458/urj.v15i2.4831

Issue

Section

Articles
Loading...