Natural selection of melanism in jaguar and oncilla in Costa Rica

Natural selection of melanism in jaguar and oncilla in Costa Rica


  • Amy A. Eppert Point Loma Nazarene University, Departamento de Biología, 3900 Lomaland Drive, San Diego, CA 92106 Estados Unidos. Centro Quetzal de Educación e Investigación, 200 metros al norte del hotel Savegre, San Gerardo de Dota, Costa Rica.
  • Ryan T. Botts Point Loma Nazarene University, Departamento de las Ciencias de la Matemáticas, Información y Computación, 3900 Lomaland Drive, San Diego, CA 92106 Estados Unidos
  • Michael S. Mooring Point Loma Nazarene University, Departamento de Biología, 3900 Lomaland Drive, San Diego, CA 92106 Estados Unidos. Centro Quetzal de Educación e Investigación, 200 metros al norte del hotel Savegre, San Gerardo de Dota, Costa Rica.



melanism, Gloger`s rule, temporal segregation, jaguar, oncilla


Introduction: The persistence of coat color polymorphisms, such as the coexistence of the melanistic coat color (black) and "wild type" (spotted), is an evolutionary enigma. Objective: The predictions of Gloger's Rule and the Temporal Segregation hypothesis were tested, which propose that melanistic individuals (a) will occur more frequently in dense tropical forest than in open habitat due to the advantages of camouflage and thermoregulation, and (b) will be most active during the brightest times of the circadian and lunar cycle because black pigmentation is cryptic under bright light. Methods: Based on 10 years of jaguar and oncilla camera trap records from dense tropical forest in Costa Rica, the activity patterns and relative abundance of non-melanistic (rosetted or spotted) versus melanistic morphs was compared. Results: Twenty-five percent of jaguar records in dense forests were melanistic compared to the global average of 10% in open and closed habitats; 32% of oncilla records were melanistic compared to 18% overall in Brazil. Overlap analysis indicated that melanistic jaguars were more active during daylight hours compared to non-melanistic jaguars, which were more nocturnal and crepuscular. Likewise, melanistic oncilla were more diurnal than non-melanistic oncilla; melanistic oncilla were also more active during the full moon, while the non-melanistic oncilla were less active. Conclusion: These results imply that melanistic jaguar and oncilla enjoy the adaptive benefits of superior camouflage when inhabiting dense forest and accumulate a fitness advantage when hunting in brighter light conditions. If true, natural selection would ensure that melanistic individuals persist when dense forest is retained but may be threatened by deforestation and accelerating human presence.


Anile, S., & Devillard, S. (2015). Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae. Animal Conservation, 19, 35–45.

Azevedo, F. C., Lemos, F. G., Freitas-Junior, M. C., Rocha, D. G., & Azevedo, F. C. C. (2018). Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. Journal of Zoology, 305, 246–255.

da Silva, L. G. (2017). Ecology and evolution of melanism in big cats: Case study with black leopards and jaguars. In A. B. Shrivastav & K. P. Singh (Eds.). Big cats (pp. 93–110). IntechOpen.

da Silva, L. G., de Oliveira, T. G., Kasper, C. B., Cherem, J. J., Moraes, E. A., Paviolo, A., & Eizirik, E. (2016). Biogeography of polymorphic phenotypes: Mapping and ecological modelling of coat colour variants in an elusive Neotropical cat, the jaguarundi (Puma yagouaroundi). Journal of Zoology, 299(4), 295–303.

Delhey, K. (2017). Gloger’s rule. Current Biology Magazine, 27, R689–R691.

Delhey, K. (2019). A review of Gloger's rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biological Reviews, 94(4), 1294-1316.

Eizirik, E., Yuhki, N., Johnson, W. E., Menotti-Raymond, M., Hannah, S. S., & O’Brien, S. J. (2003). Molecular genetics and evolution of melanism in the cat family. Current Biology, 13(5), 448–453.

Forsman, A., Ahnesjö, J., Caesar, S., & Karlsson, M. (2008). A model of ecological and evolutionary consequences of color polymorphism. Ecology, 89(1), 34–40.

Graipel, M. E., Bogoni, J. A., Giehl, E. L. H., Cerezer, F. O., Cáceres, N. C., & Eizirik, E. (2019). Melanism evolution in the cat family is influenced by intraspecific communication under low visibility. PLoS ONE, 14, e0226136. https://doi. org/10.1371/journal.pone.0226136.

Graipel, M. E., Oliveira-Santos, L. G. R., Goulart, F. V. B., Tortato, M. A., Miller, P. R. M., & Cáceres, N. C. (2014). The role of melanism in oncillas on the temporal segregation of nocturnal activity. Brazilian Journal of Biology, 74, S142-S145.

Jaroš, R. (2012). The ecological and ethological significance of felid coat patterns (Felidae). [Unpublished doctoral dissertation, Charles University].

Kitchener, A. C., Breitenmoser-Würsten, C., Eizirik, E., Gentry, A., Werdelin, L., Wilting, A., Yamaguchi, N., Abramov, A. V., Christiansen, P., Driscoll, C., Duckworth, J. W., Johnson, W. E., Luo, S. J., Meijaard, E., O'Donoghue, P., Sanderson, J., Seymour, K., Bruford, M., Groves, C…. Tobe, S. (2017). A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN-SSC Cat Specialist Group. Cat Specialist Group, 11, 1-80.

Lynam, A. J., Jenks, K. E., Tantipisanuh, N., Chutipong, W., Ngoprasert, D., Gale, G. A., Steinmetz, R., Sukmasuang, R., Bhumpakphan, N., Grassman, L. I., Cutter, P., Kitamura, S., Reed, D. H., Baker, M. C., McShea, W., Songsasen, N., Leimgruber, P. (2013). Terrestrial activity patterns of wild cats from camera-trapping. The Raffles Bulletin of Zoology, 61(1), 407-415.

Meredith, M., & Ridout, M. (2018a). Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.3.2.

Meredith, M., & Ridout, M. (2018b). Overview of the overlap package.

Mooring, M. S., Eppert, A. A., Botts, R. T. (2020). Natural selection of melanism in Costa Rican jaguar and oncilla: a test of Gloger’s Rule and the temporal segregation hypothesis. Tropical Conservation Science, 13, 1-15.

Nouvellet, P., Rasmussen, G. S. A., Macdonald, D. W., & Courchamp, F. (2012). Noisy clocks and silent sunrises: measurement methods of daily activity pattern. Journal of Zoology, 286, 179–184.

Payan, E., & de Oliveira, T. (2016). Leopardus tigrinus. The IUCN Red List of Threatened Species 2016: e.T54012637A50653881. UK.2016-2.RLTS.T54012637A50653881.en.

Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R., & Harmsen, B. (2017). Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436. http://dx.doi. org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological and Environmental Statistics, 14, 322-337.

Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., & Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5(11), 1170-1179.

Schneider, A., David, V. A., Johnson, W. E., O’Brien, S. J., Barsh, G. S., Menotti-Raymond, M., & Eizirik, E. (2012). How the leopard hides its spots: ASIP mutations and melanism in wild cats. PLoS One, 7(12), e50386. 1371/journal.pone.0050386.

Schneider, A., Henegar, C., Day, K., Absher, D., Napolitano, C., Silveira, L., David, V.A., O’Brien, S. J., Menotti-Raymond, M., Barsh, G.S., Eizirik, E. (2015). Recurrent evolution of melanism in South American felids. PLoS Genetics, 10(2), e1004892.

Si, X., Kays, R., & Ding, P. (2014). How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ, 2: e374.

Sollmann, R. (2018). A gentle introduction to camera‐trap data analysis. African Journal of Ecology, 56(4), 740–749.

Tan, W.S., Hamzah, N.B.A., Saaban, S., Zawakhir, N.A., Rao, Y., Jamaluddin, N., Cheong, F., Khalid, N.B., Mohd Saat, N.L., Zaidee Ee, E.N.B., Hamdan, A.B., Chow, M.M., Low, C.P., Voon, M., Liang, S.H., Tyson, M., Gumal, M. (2018). Observations of occurrence and daily activity patterns of ungulates in the Endau Rompin Landscape, Peninsular Malaysia. Journal of Threatened Taxa, 10(2), 11245–11253.

Thieurmel, G., & Elmarhraoui, A. (2019). Package ‘suncalc’: Compute sun position, sunlight phases, moon position and lunar phase. R package version 0.5. https://cran.r-project. org/web/packages/suncalc/suncalc.pdf.

Tobler, M. (2015). Camera Base version 1.7 user guide. Atrium Biodiversity Information System.

Tortato, M. A., & de Oliveira, T. G. (2005). Ecology of the oncilla (Leopardus tigrinus) at Serra do Tabuleiro State Park, Southern Brazil. CAT News, 42, 28-30.

Upton, G. J. G. (1992). Fisher's exact test. Journal of the Royal Statistical Society Series A (Statistics in Society), 155(3), 395-402.

Van Berkel, T. (2014). Camera trapping for wildlife conservation: expedition field techniques. Geography Outdoors, Royal Geographical Society.



How to Cite

Eppert, A. A., Botts, R. T., & Mooring, M. S. (2021). Natural selection of melanism in jaguar and oncilla in Costa Rica. UNED Research Journal, 14(S1).