Natural selection of melanism in jaguar and oncilla in Costa Rica
DOI:
https://doi.org/10.22458/urj.v14iS1.3857Keywords:
melanism, Gloger`s rule, temporal segregation, jaguar, oncillaAbstract
Introduction: The persistence of coat color polymorphisms, such as the coexistence of the melanistic coat color (black) and "wild type" (spotted), is an evolutionary enigma. Objective: The predictions of Gloger's Rule and the Temporal Segregation hypothesis were tested, which propose that melanistic individuals (a) will occur more frequently in dense tropical forest than in open habitat due to the advantages of camouflage and thermoregulation, and (b) will be most active during the brightest times of the circadian and lunar cycle because black pigmentation is cryptic under bright light. Methods: Based on 10 years of jaguar and oncilla camera trap records from dense tropical forest in Costa Rica, the activity patterns and relative abundance of non-melanistic (rosetted or spotted) versus melanistic morphs was compared. Results: Twenty-five percent of jaguar records in dense forests were melanistic compared to the global average of 10% in open and closed habitats; 32% of oncilla records were melanistic compared to 18% overall in Brazil. Overlap analysis indicated that melanistic jaguars were more active during daylight hours compared to non-melanistic jaguars, which were more nocturnal and crepuscular. Likewise, melanistic oncilla were more diurnal than non-melanistic oncilla; melanistic oncilla were also more active during the full moon, while the non-melanistic oncilla were less active. Conclusion: These results imply that melanistic jaguar and oncilla enjoy the adaptive benefits of superior camouflage when inhabiting dense forest and accumulate a fitness advantage when hunting in brighter light conditions. If true, natural selection would ensure that melanistic individuals persist when dense forest is retained but may be threatened by deforestation and accelerating human presence.
References
Anile, S., & Devillard, S. (2015). Study design and body mass influence RAIs from camera trap studies: evidence from the Felidae. Animal Conservation, 19, 35–45. https://doi.org/10.1111/acv.12214
Azevedo, F. C., Lemos, F. G., Freitas-Junior, M. C., Rocha, D. G., & Azevedo, F. C. C. (2018). Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. Journal of Zoology, 305, 246–255. https://doi.org/10.1111/jzo.12558
da Silva, L. G. (2017). Ecology and evolution of melanism in big cats: Case study with black leopards and jaguars. In A. B. Shrivastav & K. P. Singh (Eds.). Big cats (pp. 93–110). IntechOpen. http://dx.doi.org/10.5772/intechopen.69558
da Silva, L. G., de Oliveira, T. G., Kasper, C. B., Cherem, J. J., Moraes, E. A., Paviolo, A., & Eizirik, E. (2016). Biogeography of polymorphic phenotypes: Mapping and ecological modelling of coat colour variants in an elusive Neotropical cat, the jaguarundi (Puma yagouaroundi). Journal of Zoology, 299(4), 295–303. https://doi.org/10.1111/jzo.12358
Delhey, K. (2017). Gloger’s rule. Current Biology Magazine, 27, R689–R691. https://doi.org/10.1016/j.cub.2017.04.031
Delhey, K. (2019). A review of Gloger's rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biological Reviews, 94(4), 1294-1316. https://doi.org/10.1111/brv.12503
Eizirik, E., Yuhki, N., Johnson, W. E., Menotti-Raymond, M., Hannah, S. S., & O’Brien, S. J. (2003). Molecular genetics and evolution of melanism in the cat family. Current Biology, 13(5), 448–453. https://doi.org/10.1016/S0960-9822(03)00128-3
Forsman, A., Ahnesjö, J., Caesar, S., & Karlsson, M. (2008). A model of ecological and evolutionary consequences of color polymorphism. Ecology, 89(1), 34–40. https://doi.org/10.1890/07-0572.1
Graipel, M. E., Bogoni, J. A., Giehl, E. L. H., Cerezer, F. O., Cáceres, N. C., & Eizirik, E. (2019). Melanism evolution in the cat family is influenced by intraspecific communication under low visibility. PLoS ONE, 14, e0226136. https://doi. org/10.1371/journal.pone.0226136.
Graipel, M. E., Oliveira-Santos, L. G. R., Goulart, F. V. B., Tortato, M. A., Miller, P. R. M., & Cáceres, N. C. (2014). The role of melanism in oncillas on the temporal segregation of nocturnal activity. Brazilian Journal of Biology, 74, S142-S145. https://doi.org/10.1590/1519-6984.14312
Jaroš, R. (2012). The ecological and ethological significance of felid coat patterns (Felidae). [Unpublished doctoral dissertation, Charles University].
Kitchener, A. C., Breitenmoser-Würsten, C., Eizirik, E., Gentry, A., Werdelin, L., Wilting, A., Yamaguchi, N., Abramov, A. V., Christiansen, P., Driscoll, C., Duckworth, J. W., Johnson, W. E., Luo, S. J., Meijaard, E., O'Donoghue, P., Sanderson, J., Seymour, K., Bruford, M., Groves, C…. Tobe, S. (2017). A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN-SSC Cat Specialist Group. Cat Specialist Group, 11, 1-80.
Lynam, A. J., Jenks, K. E., Tantipisanuh, N., Chutipong, W., Ngoprasert, D., Gale, G. A., Steinmetz, R., Sukmasuang, R., Bhumpakphan, N., Grassman, L. I., Cutter, P., Kitamura, S., Reed, D. H., Baker, M. C., McShea, W., Songsasen, N., Leimgruber, P. (2013). Terrestrial activity patterns of wild cats from camera-trapping. The Raffles Bulletin of Zoology, 61(1), 407-415.
Meredith, M., & Ridout, M. (2018a). Overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.3.2. https://cran.r-project.org/web/packages/overlap/overlap.pdf
Meredith, M., & Ridout, M. (2018b). Overview of the overlap package. https://cran.r-project.org/web/packages/overlap/vignettes/overlap.pdf
Mooring, M. S., Eppert, A. A., Botts, R. T. (2020). Natural selection of melanism in Costa Rican jaguar and oncilla: a test of Gloger’s Rule and the temporal segregation hypothesis. Tropical Conservation Science, 13, 1-15. https://doi.org/10.1177/1940082920910364
Nouvellet, P., Rasmussen, G. S. A., Macdonald, D. W., & Courchamp, F. (2012). Noisy clocks and silent sunrises: measurement methods of daily activity pattern. Journal of Zoology, 286, 179–184.
Payan, E., & de Oliveira, T. (2016). Leopardus tigrinus. The IUCN Red List of Threatened Species 2016: e.T54012637A50653881. http://dx.doi.org/10.2305/IUCN. UK.2016-2.RLTS.T54012637A50653881.en.
Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R., & Harmsen, B. (2017). Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436. http://dx.doi. org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org
Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological and Environmental Statistics, 14, 322-337. https://doi.org/10.1198/jabes.2009.08038
Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., & Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5(11), 1170-1179. https://doi.org/10.1111/2041-210X.12278
Schneider, A., David, V. A., Johnson, W. E., O’Brien, S. J., Barsh, G. S., Menotti-Raymond, M., & Eizirik, E. (2012). How the leopard hides its spots: ASIP mutations and melanism in wild cats. PLoS One, 7(12), e50386. https://doi.org/10. 1371/journal.pone.0050386.
Schneider, A., Henegar, C., Day, K., Absher, D., Napolitano, C., Silveira, L., David, V.A., O’Brien, S. J., Menotti-Raymond, M., Barsh, G.S., Eizirik, E. (2015). Recurrent evolution of melanism in South American felids. PLoS Genetics, 10(2), e1004892. https://doi.org/10.1371/journal.pgen.1004892
Si, X., Kays, R., & Ding, P. (2014). How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ, 2: e374. https://doi.org/10.7717/peerj.374.
Sollmann, R. (2018). A gentle introduction to camera‐trap data analysis. African Journal of Ecology, 56(4), 740–749. https://doi.org/10.1111/aje.12557
Tan, W.S., Hamzah, N.B.A., Saaban, S., Zawakhir, N.A., Rao, Y., Jamaluddin, N., Cheong, F., Khalid, N.B., Mohd Saat, N.L., Zaidee Ee, E.N.B., Hamdan, A.B., Chow, M.M., Low, C.P., Voon, M., Liang, S.H., Tyson, M., Gumal, M. (2018). Observations of occurrence and daily activity patterns of ungulates in the Endau Rompin Landscape, Peninsular Malaysia. Journal of Threatened Taxa, 10(2), 11245–11253. https://doi.org/10.11609/jott.3519.10.2.11245-11253
Thieurmel, G., & Elmarhraoui, A. (2019). Package ‘suncalc’: Compute sun position, sunlight phases, moon position and lunar phase. R package version 0.5. https://cran.r-project. org/web/packages/suncalc/suncalc.pdf.
Tobler, M. (2015). Camera Base version 1.7 user guide. Atrium Biodiversity Information System. http://www.atrium-biodiversity.org/tools/camerabase/
Tortato, M. A., & de Oliveira, T. G. (2005). Ecology of the oncilla (Leopardus tigrinus) at Serra do Tabuleiro State Park, Southern Brazil. CAT News, 42, 28-30.
Upton, G. J. G. (1992). Fisher's exact test. Journal of the Royal Statistical Society Series A (Statistics in Society), 155(3), 395-402. https://doi.org/10.2307/2982890
Van Berkel, T. (2014). Camera trapping for wildlife conservation: expedition field techniques. Geography Outdoors, Royal Geographical Society.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 UNED Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.