Biochemical and physiological responses of the tree Pterogine nitens (Fabaceae) to simulated glyphosate drift
PDF
HTML
EPUB

Keywords

Agrochemicals
ecophysiology
environmental impact
mineral nutrition
abiotic stress

How to Cite

MeloniD. A., NievaM. J., & AspiazúI. (2022). Biochemical and physiological responses of the tree Pterogine nitens (Fabaceae) to simulated glyphosate drift. UNED Research Journal, 14(1), e3825. https://doi.org/10.22458/urj.v14i1.3825

Abstract

Introduction: In the last decades, the natural dispersal area of P. nitens has been subjected to a change in land use. The agricultural frontier has expanded, at the expense of native forest, with the incorporation of productive systems that use high doses of the herbicide glyphosate. The degree of tolerance of the species to the herbicide and its physiological responses are unknown. Objective: To evaluate the biochemical and physiological responses of Pterogine nitens to simulated glyphosate drift. Methods: Greenhouse trials were conducted with one-year-old plants grown in pots. Glyphosate drift was simulated at doses of 0,65 and 130g a.e. ha-1. We measured concentrations of shikimate, photosynthetic pigments, and mineral composition, 20 days after application. Results: Glyphosate increased concentrations of shikimate and decreased concentrations of photosynthetic pigments. It also reduced concentrations of potassium, magnesium, calcium, zinc, manganese, and iron. Conclusions: Glyphosate alters the photochemical stage of photosynthesis by decreasing the concentration of photosynthetic pigments. It also interferes with macro- and micronutrient homeostasis.
https://doi.org/10.22458/urj.v14i1.3825
PDF
HTML
EPUB

References

Alcántara de la Cruz, R., Barro, F., Domínguez-Valenzuela, J.A., & De Prado, R. (2016). Physiological, morphological and biochemical studies of glyphosate tolerance in Mexican Cologania (Cologania broussonetii (Balb.) DC.). Plant Physiology and Biochemistry, 98, 72-80. https://doi.org/10.1016/j.plaphy.2015.11.009

Batista, P.F., Costa, A.C., Megguer, C.A., Lima, J.S., Silva, F.B., Guimarães, D.S., Almeida, G.M., & Nascimento, K.J.T. (2018). Pouteria torta: a native species of the Brazilian Cerrado as a bioindicator of glyphosate action. Brazilian Journal of Biology, 78(2), 296-305. https://doi.org/10.1590/1519-6984.07416

Calzón, M.E., & Giménez, A.M. (2011). Evaluación del potencial dendrocronológico de tipa colorada como herramienta para el manejo forestal en las Yungas de Salta (Argentina). Quebracho Revista de Ciencias Forestales, 19(1-2), 5-13. https://www.redalyc.org/pdf/481/48122207001.pdf

Choumet, J., & Phélinas, P. (2015). Determinants of agricultural land values in Argentina. Ecological Economics, 110, 134-140. https://doi.org/10.1016/j.ecolecon.2014.12.024

Chrysargyris, A., Xylia, P., Botsaris, G., & Tzortzakis, N. (2017). Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Industrial Crops and Products, 103, 202-212. https://doi.org/10.1016/j.indcrop.2017.04.010

de Freitas-Silva, L., Araújo, T.O., Nunes-Nesi, A., Ribeiro, C., Costa, A.C., & Silva, L.C. (2020) Evaluation of morphological and metabolic responses to glyphosate exposure in two neotropical plant species. Ecological Indicators, 113, 1-11. https://doi.org/10.1016/j.ecolind.2020.106246

de Freitas-Silva, L., Castro, N.D., & Campos da Silva, L. (2021). Morphoanatomical and biochemical changes in Zeyheria tuberculosa exposed to glyphosate drift. Botany, 99(2), 91-98. https://doi.org/10.1139/cjb-2020-0150

Espíndola, Y., Romero, L., Ruiz Diaz, R., & Luna, C. (2018). Influencia de las condiciones de incubación sobre la germinación de semillas de diferentes individuos de Pterogyne nitens. Quebracho Revista de Ciencias Forestales, 26(1), 5-17. https://www.redalyc.org/jatsRepo/481/48160748002/48160748002.pdf

Giménez, A.M., & Moglia, J.G. (2003). Árboles del Chaco Argentino. Guía para el reconocimiento dendrológico. Santiago del Estero el Liberal.

Gomes, MP, Smedbol, E., Carneiro, M., García, Q.S., & Juneau, P. (2014a). Reactive oxygen species and plant hormones. En P. Ahmad (Ed.) Oxidative Damage to Plants (pp. 65-88). Academic Press. https://doi.org/10.1016/B978-0-12-799963-0.00002-2.

Gomes, M.P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M., & Juneau, P. (2014b). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of Experimental Botany, 65(17), 4691-4703. DOI:10.1093/jxb/eru269

Gomes, M.P., & Juneau, P. (2016). Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: is the mitochondrial electron transport chain a target of this herbicide? Environmental Pollution, 218, 402–409. https://doi.org/10.1016/j.envpol.2016.07.019

Gomes, M.P., da Silva F.V., Bicalho, E.M., Borges, F.V., Fonseca, M.B., Juneau, F., & Garcia, Q.S. (2017). Effects of glyphosate acid and the glyphosate-commercial formulation (Roundup) on Dimorphandra wilsonii seed germination: Interference of seed respiratory metabolism. Environmental Pollution, 220(Part A), 452–459. https://doi.org/10.1016/j.envpol.2016.09.087

Huang. J., Silva, E.N., Shen, Z., Jiang, B., & Lu, H. (2012). Effects of glyphosate on photosynthesis, chlorophyll fluorescence and physicochemical properties of cogongrass (Imperata cylindrical L.). Plant Omics Journal, 5(2), 177–183. https://www.pomics.com/lu_5_2_2012_177_183.pdf

Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591

Mateos-Naranjo, E., & Perez-Martin, A. (2013). Effects of sublethal glyphosate concentrations on growth and photosynthetic performance of non-target species Bolboschoenus maritimus. Chemosphere, 93(10), 2631–2638. https://doi.org/10.1016/j.chemosphere.2013.09.094

Meloni, D.A., & Martínez, C.A. (2021). Physiological responses of Eucalyptus camaldulensis (Dehnh.) to simulated glyphosate drift. Biofix Scientific Journal, 6(1), 46-53. http://dx.doi.org/10.5380/biofix.v6i1.77236

Mertens, M., Höss, S., Neumann, G., Afzal, J., & Reichenbecher, W. (2018). Glyphosate, a chelating agent-relevant for ecological risk assessment? Environmental Science Pollution Research International, 25(6), 5298-5317. https://doi.org/10.1007/s11356-017-1080-1

Nilsson, G. (1985). Interactions between glyphosate and metals essential for plant growth, In E. Grossbard & D. Atkinson (Eds.), The herbicide glyphosate, (pp. 35–47). Butterworth.

Rezende-Silva, S.L., Costa, A.C., Dyszy, F.H., Batista, P.F., Crispim-Filho, A.J., Nascimento, K.J.T., & Silva, A.A. (2019). Pouteria torta is a remarkable native plant for biomonitoring the glyphosate effects on Cerrado vegetation. Ecological Indicators, 102, 497–506. https://doi.org/10.1016/j.ecolind.2019.03.003

Sandmann, G., Römer, S., & Fraser, P.D. (2006). Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metabolic Engineering, 8(4), 291–302. https://doi.org/10.1016/j.ymben.2006.01.005

Schrübbers, L.C., Valverde, B.E., Sørensen, J.C., & Cedergreen, N. (2014). Glyphosate spray drift in Coffea arabica – Sensitivity of coffee plants and possible use of shikimic acid as a biomarker for glyphosate exposure. Pesticide Biochemistry and Physiology, 115, 15–22. https://doi.org/10.1016/j.pestbp.2014.08.003

Singh, B., & Shaner, D. (1998). Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technology, 12(3), 527-530. https://doi.org/10.1017/S0890037X00044250

Zobiole, L.H.S, Kremer, R.J., & Oliveira, R.S. (2011) Constantin, J. Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.), Pesticide Biochemistry and Physiology, 99(1), 53-60. https://doi.org/10.1016/j.pestbp.2010.10.005

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.