Validation of an analytical method with modified acid purity and iron matrices to measure heavy metals (Cd, Pb, Cr and As) in fertilizers
DOI:
https://doi.org/10.22458/urj.v14i1.3485Keywords:
heavy metals, fertilizer, agrochemicals, validation, ICPAbstract
Introduction: The frequent use of fertilizers in the Costa Rican agricultural sector causes environmental pollution; and heavy metals are among the main pollutants because of their high toxicity, strengthening the need for affordable and reliable local methods to assess pollution levels. Objective: To validate an adaptation of a method that uses modified acid purity and iron matrices to measure heavy metals (Cd, Pb, Cr and As) in fertilizers. Method: We tested four duplicate analyzes of a sample of known concentration with reactive grade acids and ultra-pure acids. For the iron interference test, we used eight replicates. We also did tests for bias, precision, detection limits, quantification limit, specificity, recovery, false positives and false negatives. Results: The new method proved satisfactory and its efficiency held by analytical performance parameters. Conclusions: The method is resistant to changes in acid purity, and tolerates matrices with iron concentrations under 5% m/m.
References
AOAC International. (2017). Simultaneous Determination of Arsenic, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Selenium, and Zinc in Fertilizers. https://bit.ly/3DEZbVB
Barceló, J., & Poschenrieder, C. (1992). Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta, 2(2), 345-361. https://bit.ly/3q3dLBc
Belouafa, S., Habti, F., Benhar, S., Belafkih, B., Tayane, S., Hamdouch, S., Bennamara, A., & Abourriche, A. (2017). Statistical tools and approaches to validate analytical methods: methodology and practical examples. International Journal of Metrology and Quality Engineering, 8, 9. https://doi.org/10.1051/ijmqe/2016030
Boqué, R. (2005). La selectividad en análisis químico. Técnicas de Laboratorio, 299, 878-881. https://bit.ly/3HNqz4C
Dagnino, J. (2014). Análisis de varianza. Revista Chilena de Anestesia, 43(4), 306-310. https://bit.ly/3zu9MzT
Gutiérrez Pulido, H., & De la Vara, R. (2008). Análisis y diseño de experimentos. Editorial McGraw-Hill Internacional.
Karageorgou, E., & Samanidou, V. (2014). Youden test application in robustness assays during method validation. Journal of Chromatography A, 1353, 131–139. https://doi.org/10.1016/j.chroma.2014.01.050
Komsta, L. (2006). Processing data for outliers. The Newsletter of the R Project, 6(2), 10-13. https://bit.ly/3JSXOp6
Ministerio de Agricultura y Ganadería [MAG]. (2016). Norma Rtcr 485:2016 Sustancias Químicas. Fertilizantes Y Enmiendas Para Uso Agrícola. Tolerancias Y Límites Permitidos Para La Concentración De Los Elementos Nutritivos, Metales Pesados E Impurezas. https://bit.ly/3HL32kZ
Magnusson, B., & Örnemark, U. (2014) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. https://bit.ly/3t8gN9w
Merck. (2019). Ácido nítrico 65% Suprapur®. Merck. https://bit.ly/3tmVtgD
Modaihsh, A. S., AI-Swailem, M. S., & Mahjoub, M. O. (2004). Heavy metals content of commercial inorganic fertilizers used in the Kingdom of Saudi Arabia. Journal of Agricultural and Marine Sciences [JAMS], 9(1), 21-25. https://journals.squ.edu.om/index.php/jams/article/view/621
Molina, N. P., Aguilar, P., & Cordovez, C. (2010). Plomo, cromo III y cromo VI y sus efectos sobre la salud humana. Ciencia y Tecnología para la Salud Visual y Ocular, 8(1), 77-88. https://bit.ly/3yDJXzI
Moosavi, S. M., & Ghassabian, S. (2018). Linearity of calibration curves for analytical methods: A review of criteria for assessment of method reliability. In M. Stauffer (Ed.), Calibration and Validation of Analytical Methods: A Sampling of Current Approaches (pp. 109-127). IntechOpen. https://bit.ly/3jzBaHv
Mora, S. (2019). Informe Comercio Exterior del Sector Agropecuario 2017-2018. https://bit.ly/2NCMf8T
Nava-Ruiz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Archivos de Neurociencias, 16(3), 140-147. https://bit.ly/3wliDnk
Lagos, M.R. (2016). Uso del nebulizador ultrasónico con el espectrómetro de emisión óptica por plasma inducido (ICP OES) para mejorar los límites de detección en la cuantificación de metales en muestras de aguas y aguas residuales. [Tesis Profesional en Química, Universidad Nacional Mayor de San Marcos]. http://cybertesis.unmsm.edu.pe/handle/20.500.12672/4867
Rodríguez, J.C., Alcalá, J.A., Hernández, A., Rodríguez, H., Ruiz, F.H., García, J.L., & Díaz, P.E. (2014). Elementos traza en fertilizantes y abonos utilizados en agricultura orgánica y convencional. Revista Mexicana de Ciencias Agrícolas, 5(4), 695-701. https://bit.ly/3JOBnl5
Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of young scientists, 2(1), 21-25. https://bit.ly/3q3aJx0
United Nations Office on Drugs and Crime [UNODC]. (2009). Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens. https://bit.ly/3yrXarF
Verbić, T., Dorko, Z., & Horvai, G. (2013). Selectivity in analytical chemistry. Revue Roumaine de Chimie, 58(7-8), 569-575. http://revroum.lew.ro/wp-content/uploads/2013/7/Art%2001.pdf
Vergara, E. J. (2019). Contaminación ambiental, bioacumulación y biomagnificación por metales pesados en un sector del Rio Alto-Chicamocha. [Tesis de doctorado, Universidad Pedagógica y Tecnológica de Colombia]. https://repositorio.uptc.edu.co/handle/001/3680
Webb, S., Bartos, J., Boles, R., Hasty, E., Thuotte, E., & Thiex, N. J. (2014). Simultaneous Determination of Arsenic, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Selenium, and Zinc in Fertilizers by Microwave Acid Digestion and Inductively Coupled Plasma-Optical Emission Spectrometry Detection: Single-Laboratory Validation of a Modification and Extension of AOAC 2006.03. Journal of AOAC International, 97(3), 700–711. https://doi.org/10.5740/jaoacint.13-408
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 UNED Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.