Bat functional diversity in two livestock production farms in Guanacaste, Costa Rica
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

Keywords

Keywords: frugivorous bats, functional dispersion, functional evenness, functional richness, livestock farms.
frugivorous bats, functional dispersion, functional evenness, functional richness, livestock farms.
frugivorous bats
functional dispersion
functional evenness

How to Cite

Mora EscobarF., & MaglianesiM. A. (2021). Bat functional diversity in two livestock production farms in Guanacaste, Costa Rica. UNED Research Journal, 13(2), e3465. https://doi.org/10.22458/urj.v13i2.3465

Abstract

Introduction: Livestock activities are one of the main causes of the loss and degradation of tropical forests. Consequently, groups of organisms such as bats are affected, impacting the ecosystem services they provide. The analysis of the functional structure of bat assemblages allows to effectively know the characteristics and responses of the species in an ecosystem, thus contributing to the assessment of conservation status of the environments. Objectives: To describe the functional structure of fruit bat assemblages in two livestock farms in Guanacaste, Costa Rica. Methods: Two functional traits related to body size (body mass and forearm length) were measured in fruit bats captured with mist nets in two localities (Nambí and Hojancha). From these traits, the functional diversity of the assemblages was quantified by using the functional richness index, evenness, and functional dispersion, and the weighted mean of these assemblages was calculated. To identify the functional groups of bats, a hierarchical clustering method based on principal component analysis was used, followed by the calculation of Euclidean distances. Results: A total of 191 individuals (14 bat species and two families) were captured. Of the species captured, nine correspond to fruit-eating bats of the subfamilies Stenodermatinae and Carollinae. The bat assemblage of Nambí presented greater functional richness than Hojancha, while the indexes of evenness and functional dispersion were similar in both sites. Conclusion: A higher functional richness of the bat assemblage at Nambí with respect to Hojancha indicates a greater amount of resources exploited by fruit-eating bats. Consequently, bats in this community could be providing greater environmental services compared to Hojancha, which evidences the importance of their conservation for the maintenance of ecological communities in anthropic ecosystems.
https://doi.org/10.22458/urj.v13i2.3465
PDF (Español (España))
HTML (Español (España))
EPUB (Español (España))

References

Almeida Real, D. (2009). Ecología y conservación de la fauna fluvial en el Parque Nacional de Cabañeros: efectos de la degradación del hábitat y de la introducción de especies exóticas (Doctoral dissertation, Universidad Complutense de Madrid, Servicio de Publicaciones).
Arias-Aguilar, A., Chacón-Madrigal, E., & Rodríguez-Herrera, B. (2015). El uso de los parques urbanos con vegetación por murciélagos insectívoros en San José, Costa Rica. Mastozoología neotropical, 22(2), 229-237.
August, P. V. (1981). Fig fruit consumption and seed dispersal by Artibeus jamaicensis in the Llanos of Venezuela. Biotropica, 70-76.
Bellwood, D. R., Wainwright, P. C., Fulton, C. J., & Hoey, A. S. (2006). Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society, 273, 101-107.
Bobrowiec, P. E. D., & Gribel, R. (2010). Effects of different secondary vegetation types on bat community composition in Central Amazonia, Brazil. Animal Conservation, 13(2), 204-216.
Charles-Dominique, P. (1986). Inter-relations between frugivorous vertebrates and pioneer plants: Cecropia, birds and bats in French Guyana. In Frugivores and seed dispersal (pp. 119-135). Springer, Dordrecht.
Coleman, J. L., & Barclay, R. M. (2012). Urbanization and the abundance and diversity of Prairie bats. Urban Ecosystems, 15(1), 87-102.
Cornwell, W. K., Schwilk, W. K., Ackerly, D. D. (2006). A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465-1471.
Dias, A. T. C., Berg, M. P, de Bello, F., Van Oosten, A. R., Bílá, K., & Moretti, M. (2013). An experimental framework to identify community functional components driving ecosystem processes and services delivery. Journal of Ecology, 101, 29-37.
Dı́az, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in ecology & evolution, 16(11), 646-655.
Dodd, L. E., Lacki, M. J., Britzke, E. R., Buehler, D. A., Keyser, P. D., Larkin, J. L., ... & Rieske, L. K. (2012). Forest structure affects trophic linkages: how silvicultural disturbance impacts bats and their insect prey. Forest Ecology and Management, 267, 262-270.
Ferreira, D. F., Rocha, R., López‐Baucells, A., Farneda, F. Z., Carreiras, J. M., Palmeirim, J. M., & Meyer, C. F. (2017). Season‐modulated responses of Neotropical bats to forest fragmentation. Ecology and Evolution, 7(11), 4059-4071.
Fleming, T. H., & Heithaus, E. R. (1986). Seasonal foraging behavior of the frugivorous bat Carollia perspicillata. Journal of Mammalogy, 67(4), 660-671.
Garbino, G. S., & Tavares, V. D. C. (2018). Roosting ecology of Stenodermatinae bats (Phyllostomidae): evolution of foliage roosting and correlated phenotypes. Mammal Review, 48(2), 75-89.
Gardner, T. A., Barlow, J., Chazdon, R., Ewers, R. M., Harvey, C. A., Peres, C. A., & Sodhi, N. S. (2009). Prospects for tropical forest biodiversity in a human‐modified world. Ecology letters, 12(6), 561-582.
Garnier, E., Cortez, J., Bille´s, G., Navas, M. L., Roumet, C., Debussche, M., … Toussaint, J. P. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85(9), 2630-2637.
Heim, O., Schröder, A., Eccard, J., Jung, K., & Voigt, C. C. (2016). Seasonal activity patterns of European bats above intensively used farmland. Agriculture, Ecosystems & Environment, 233, 130-139.
Heithaus, E. R., & Fleming, T. H. (1978). Foraging movements of a frugivorous bat, Carollia perspicillata (Phyllostomatidae). Ecological Monographs, 48(2), 127-143.
Huang, J. C. C., Rustiati, E. L., Nusalawo, M., & Kingston, T. (2019). Echolocation and roosting ecology determine sensitivity of forest‐dependent bats to coffee agriculture. Biotropica, 51(5), 757-768.
Kalda, O., Kalda, R., & Liira, J. (2015). Multi-scale ecology of insectivorous bats in agricultural landscapes. Agriculture, Ecosystems & Environment, 199, 105-113.
Kalko, E. K., & Handley, C. O. (2001). Neotropical bats in the canopy: diversity, community structure, and implications for conservation. Plant ecology, 153(1-2), 319-333.
Laliberté, E., & Legendre P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305. 
Laliberté, E., Legendre, P, & Shipley, B. (2015). Package FD. Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology v 1.0-12.
LaVal, R. K., & Rodríguez, B. (1999). Clave de campo para los murciélagos de Costa Rica. Brenesia, 52, 1-32.
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N. S. G., Garden, D., Dorrough, J., … Bonis, A. (2008). Assessing functional diversity in the field – methodology matters! Functional Ecology, 16, 134-147.
Mason, N. W. H., de Bello, F., Mouillot, D., Pavoine, S., & Dray, S. (2013). A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 24, 794-806.
Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112-118.
McGill, B. J. Enquist, B. J., Weiher, & Westoby, E. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
Mokany, K., Ash, J., & Roxburgh, S. (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96(5), 884-893.
Moreno, C. E., & Halffter, G. (2000). Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology 37:149-158.
Otavo, S., & Echeverria, C. (2017). Progressive fragmentation and loss of natural forests habitat in one of the global biodiversity hotspot. Revista Mexicana de Biodiversidad, 88(4), 924-935.
Passos, J. G., & Passamani, M. (2003). Artibeus lituratus (Chiroptera, Phyllostomidae): biologia e dispersão de sementes no Parque do Museu de Biologia Prof. Mello Leitão, Santa Teresa (ES). Natureza on line, 1(1), 1-6.
Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: back to basics and looking forward. Ecology letters, 9(6), 741-758.
Rodríguez-Aguilar, G., Orozco-Lugo, C. L., Vleut, I., & Vazquez, L. B. (2017). Influence of urbanization on the occurrence and activity of aerial insectivorous bats. Urban ecosystems, 20(2), 477-488.
Saldaña-Vázquez, R. A., Sosa, V. J., Hernández-Montero, J. R., & López-Barrera, F. (2010). Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. Biodiversity and Conservation, 19(7), 2111-2124.
Saldaña-Vázquez, R. A., Sosa, V. J., Iñiguez-Dávalos, L. I., & Schondube, J. E. (2013). The role of extrinsic and intrinsic factors in Neotropical fruit bat–plant interactions. Journal of Mammalogy, 94(3), 632-639.
Sánchez‐Azofeifa, G. A., Harriss, R. C., & Skole, D. L. (2001). Deforestation in Costa Rica: a quantitative analysis using remote sensing imagery 1. Biotropica, 33(3), 378-384.
Santos, T., & Tellería, J. L. (2006). Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Revista Ecosistemas, 15(2).
Silvetti, F., & Cáceres, D. M. (2015). La expansión de monocultivos de exportación en Argentina y Costa Rica: Conflictos socioambientales y lucha campesina por la justicia ambiental. Mundo Agrario, 16(32).
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
Vargas Espinoza, A., Aguirre, L. F., Swarner, M., Emmons, L., & Teran, M. (2004). Distribución de Vampyrum spectrum en Bolivia y comentarios sobre su estado de conservación. Ecología en Bolivia, 39(2), 46-51.
Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301.
Villéger, S., Miranda, J. R., Hernández, D. F., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20: 1512-1522.
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236-244.
York, H. A., Rodríguez-Herrera, B., Laval, R. K., Timm, R. M., & Lindsay, K. E. (2019). Field key to the bats of Costa Rica and Nicaragua. Journal of Mammalogy, 100(6), 1726-1749.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.