Waist circumference as a predictor of cardiovascular disease risk factors in Costa Rican residents aged 60 years and over.

Waist circumference as a predictor of cardiovascular disease risk factors in Costa Rican residents aged 60 years and over.

Authors

DOI:

https://doi.org/10.22458/urj.v13i1.3398

Keywords:

Obesity, Risk factor, Cardiovascular disease, Anthropometry

Abstract

 

 Introduction: There is a negative effect of abdominal obesity on the health of older adults. Objective: To investigate the relationship between waist circumference (WC) and metabolic risk factors associated with cardiovascular disease in this population. Methods: A population cross-sectional study with a total of 2 418 people of the project Costa Rica: Longevity and Healthy Aging Study and referred to as CRELES. Spearman´s correlation coefficient was calculated to estimate the correlations between WC with different risk factors for cardiovascular disease. Logistic regression analyses to calculate the odds ratio of a person presenting a cardiovascular risk factor according to the different WC levels. Results: People with wider waists are at greater risk of low HDL cholesterol, high triglycerides, diabetes and hypertension. In men, the strongest correlation was with triglycerides (r = 0,345), and in women with glycosylated hemoglobin (r = 0,262). Conclusions: Waist size can predict some risk factors for cardiovascular disease in Costa Rican residents aged 60 years and over. 

References

Aguilar, E., & Carballo, A. (2020). Factores asociados a la Proteína C en la población costarricense nacida entre 1945 y 1955. Población y Salud en Mesoamérica, 17(2). DOI: 10.15517/psm.v17i2.39798

American Diabetes Association (2018). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care 42(1), 13–28. DOI: 10.2337/dc18-S002

Afshin, A., Forouzanfar, M. H., Reitsma, M. B., Sur, P., Estep, K., Lee, A., … Murray, C. (2017). Health effects of overweight and obesity in 195 countries over 25 years. The New England journal of medicine, 377(1), 13–27. DOI: 10.1056/NEJMoa1614362

Bener, A., Yousafzai, M. T., Darwish, S., Al-Hamaq, A. O., Nasralla, E. A., & Abdul-Ghani, M. (2013). Obesity index that better predict metabolic syndrome: body mass index, waist circumference, waist hip ratio, or waist height ratio. Journal of obesity, 2013. DOI: 10.1155/2013/269038

Cetin, D., Lessig, B. A., & Nasr, E. (2016). Comprehensive evaluation for obesity: beyond body mass index. Journal of American Osteopathic Association, 116(6), 376-382. DOI: 10.7556/jaoa.2016.078

Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics—Simulation and Computation, 39(4), 860-864. DOI: 10.1080/03610911003650383

Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo, J.L. Jr., . . . the National High Blood Pressure Education Program Coordinating Committee (2003). The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 Report. Hypertension, 42, 1206-1252. DOI: 10.1161/01.HYP.0000107251.49515.c2

Dimitriadis, K., Tsioufis, C., Mazaraki, A., Liatakis, I., Koutra, E., Kordalis, A., ... & Tousoulis, D. (2016). Waist circumference compared with other obesity parameters as determinants of coronary artery disease in essential hypertension: a 6-year follow-up study. Hypertension Research, 39(6), 475-479. DOI: 10.1038/hr.2016.8

Fernández, X., & Méndez, E. (2007). Estilos de vida y factores de riesgo para la salud de las personas adultas mayores del proyecto CRELES-Costa Rica 2004-2006. Población y salud en Mesoamérica, 5(1), 1-17. DOI: 10.15517/PSM.V5I1.4547

Feng, R. N., Zhao, C., Wang, C., Niu, Y. C., Li, K., Guo, F. C., ... & Li, Y. (2012). BMI is strongly associated with hypertension, and waist circumference is strongly associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. Journal of epidemiology, 22(4), 317-323. DOI: 10.2188/jea.JE20110120

Han, T. S., van Leer, E. M., Seidell, J. C., & Lean, M. E. (1995). Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ (Clinical research ed.), 311(7017), 1401–1405. DOI: 10.1136/bmj.311.7017.1401

Hotchkiss, J.W., & Leyland, A.H. (2011). The relationship between body size and mortality in the linked Scottish Health Surveys: cross-sectional surveys with follow-up. International journal of obesity, 35(6), 838-851. DOI: 10.1038/ijo.2010.207.

International Diabetes Federation (2006). The IDF consensus worldwide definition of the metabolic syndrome. Recuperado de www.idf.org

Kazlauskienė, L., Butnorienė, J. & Norkus, A. (2015). Metabolic syndrome related to cardiovascular events in a 10-year prospective study. Diabetology & metabolic syndrome, 7(102), 1-7. DOI: 10.1186/s13098-015-0096-2

Kim, H., Kim, K., & Shin, S. (2020). Cardiometabolic risk factor in obese and normal weight individuals in community dwelling men. International journal of environmental research and public health, 17, 8925. DOI: 10.3390/ijerph17238925

Lean, M. E., Han, T. S., & Morrison, C. E. (1995). Waist circumference as a measure for indicating need for weight management. BMJ, 311(6998), 158–161. DOI: 10.1136/bmj.311.6998.158

Levine, D. A., Calhoun, D. A., Prineas, R. J., Cushman, M., Howard, V. J., & Howard, G. (2011). Moderate waist circumference and hypertension prevalence: the REGARDS Study. American journal of hypertension, 24(4), 482–488. DOI: 10.1038/ajh.2010.258

Ma, W. Y., Yang, C. Y., Shih, S. R., Hsieh, H. J., Hung, C. S., Chiu, F. C., ... & Li, H. Y. (2013). Measurement of waist circumference: midabdominal or iliac crest?. Diabetes care, 36(6), 1660-1666. DOI: doi.org/10.2337/dc12-145

Ministerio de Salud Pública de Costa Rica (2020). Informe de resultados encuesta colegial de vigilancia nutricional y actividad física. Recuperado de https://www.ministeriodesalud.go.cr/index.php/biblioteca-de-archivos/centro-de-informacion/material-publicado/investigaciones/encuestas-de-salud/censo-escolar-peso-talla/encuesta-colegial-de-vigilancia-nutricional-y-actividad-fisica-2018/4622-informe-de-resultados-encuesta-colegial-de-vigilancia-nutricional-y-actividad-fisica-2018/file

Mohammadifard, N., Nazem, M., Sarrafzadegan, N., Nouri, F., Sajjadi, F., Maghroun, M., & Alikhasi, H. (2013). Body mass index, waist-circumference and cardiovascular disease risk factors in Iranian adults: Isfahan healthy heart program. Journal of health, population, and nutrition, 31(3), 388. DOI: 10.3329/jhpn.v31i3.16831

Molarius, A., & Seidell, J. C. (1998). Selection of anthropometric indicators for classification of abdominal fatness--a critical review. International journal of obesity and related metabolic disorders, 22(8), 719–727. DOI: 10.1038/sj.ijo.0800660

National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation, 106(25), 3143-3421. DOI: 10.1161/circ.106.25.3143

Organización de las Naciones Unidas para la Alimentación y la Agricultura (2018). Panorama de la seguridad alimentaria y nutricional en América Latina y el Caribe. Recuperado de http://www.fao.org/3/CA2127ES/CA2127ES.pdf

Ostchega, Y., Hughes, J. P., Terry, A., Fakhouri, T. H., & Miller, I. (2012). Abdominal obesity, body mass index, and hypertension in US adults: NHANES 2007–2010. American journal of hypertension, 25(12), 1271-1278. DOI: 10.1038/ajh.2012.120

Rehkopf, D. H., Duong, A., Dow, W. H., & Rosero-Bixby, L. (2019). Life-course BMI and biomarkers in persons aged 60 years or older: a comparison of the USA and Costa Rica. Public health nutrition, 22(2), 314–323. DOI: 10.1017/S1368980018002276

Rehkopf, D. H., Dow, W. H., & Rosero-Bixby, L. (2010). Differences in the association of cardiovascular risk factors with education: a comparison of Costa Rica (CRELES) and the USA (NHANES). Journal of Epidemiology & Community Health, 64(9), 821-828. DOI: 10.1136/jech.2009.086926

Ridker, P. M. (2016). A test in context: high-sensitivity C-reactive protein. Journal of the American College of Cardiology, 67(6), 712-723. DOI: 10.1016/j.jacc.2015.11.037

Rosero, L., Brenes G., & Méndez, E. (2009) Obesidad, envejecimiento y mortalidad en Costa Rica. En E. Peláez (Ed.), Sociedad y adulto mayor en América Latina. Estudios sobre envejecimiento en la región (pp117-137). Brasil: ALAP. Recuperado de http://www.kerwa.ucr.ac.cr/handle/10669/29245

Rosero-Bixby, L., & Dow, W.H. (2012). Predicting mortality with biomarkers: a population-based prospective cohort study for elderly Costa Ricans. Population health metrics 10(11), 1-15. DOI:10.1186/1478-7954-10-11

Rosero-Bixby, L., Dow, W.H., & Fernández, X. (2013). CRELES: Costa Rican Longevity and Healthy Aging Study. Methods, Wave 1. Berkeley, CA: Department of Demography, University of California, Berkeley [Electronic Document]. Recuperado de http://www.creles.berkeley.edu/pdf/Methods_w1.pdf

Rost, S., Freuer, D., Peters, A., Thorand, B., Holle, R., Linseisen, J., & Meisinger, C. (2018). New indexes of body fat distribution and sex-specific risk of total and cause-specific mortality: a prospective cohort study. BMC Public Health, 18(1), 427. DOI: 10.1186/s12889-018-5350-8.

Seidell, J. (2010). Waist circumference and waist/hip ratio in relation to all-cause mortality, cancer and sleep apnea. European journal of clinical nutrition, 64, 35–41. DOI: 10.1038/ejcn.2009.71

Staiano, A.E., Reeder, B.A., Elliott, S., Joffres, M.R., Pahwa, P., Kirkland, S.A., . . . Katzmarzyk, P.T. (2012). Body mass index versus waist circumference as predictors of mortality in Canadian adults. International journal of obesity, 36(11), 1450-1454. DOI: 10.1038/ijo.2011.268

The InterAct Consortium (2012). Long-term risk of incident Type 2 Diabetes and measures of overall and regional obesity: The EPIC-InterAct Case-Cohort Study. PLOS Medicine 9(6): e1001230. DOI: 10.1371/journal.pmed.1001230

Van Dijk, S. B., Takken, T., Prinsen, E. C., & Wittink, H. (2012). Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: a meta-analysis. Netherlands heart journal, 20(5), 208-218. DOI: 10.1007/s12471-011-0237-7

Warren, T. Y., Wilcox, S., Dowda, M., & Baruth, M. (2012). Independent association of waist circumference with hypertension and diabetes in African American women, South Carolina, 2007-2009. Preventing chronic disease, 9, E105. DOI: 10.5888/pcd9.110170

Xin, Z., Liu, C., Niu, W. Y., Feng, J. P., Zhao, L., Ma, Y. H., ... & Yang, J. K. (2012). Identifying obesity indicators which best correlate with type 2 diabetes in a Chinese population. BMC Public Health, 12(1), 1-6. DOI: 10.1186/1471-2458-12-732

Zhao, Y., Zhang, M., Luo, X., Wang, C., Li, L., Zhang, L., ... & Hu, D. (2017). Association of 6-year waist circumference gain and incident hypertension. Heart, 103(17), 1347-1352. DOI: 10.1136/heartjnl-2016-310760

Published

2021-05-30

How to Cite

Aguilar Fernández, E., & Carballo Alfaro, A. M. (2021). Waist circumference as a predictor of cardiovascular disease risk factors in Costa Rican residents aged 60 years and over . UNED Research Journal, 13(1), e3398. https://doi.org/10.22458/urj.v13i1.3398

Issue

Section

Articles
Loading...