Morfometría de la cuenca alta del río Páez, Costa Rica, y su relación con la infiltración
PDF
HTML
EPUB

Palabras clave

Geometría de cuencas
Red de drenajes
Curva hipsométrica
Pendiente del terreno
Infiltración

Cómo citar

Ramírez Granados, P., Astorga Gättgens, A., Campos Bejarano, L., & Henríquez Henríquez, C. (2020). Morfometría de la cuenca alta del río Páez, Costa Rica, y su relación con la infiltración . UNED Research Journal, 12(2), e3142. https://doi.org/10.22458/urj.v12i2.3142

Resumen

Introducción: Los estudios morfométricos son la base del estudio hidrológico de una cuenca y tienen aplicación en la conservación de suelos y aguas. Se sabe poco sobre la cuenca alta del río Páez, Costa Rica, cuyos manantiales son usados en ganadería y cultivo de vegetales. Objetivo: establecer la morfometría de la cuenca y evaluar la infiltración el potencial de recarga. Método: Usamos curvas de nivel digitalizadas, cada 5m, para construir un Modelo de Elevación Digital en Surfer (triangulación con interpolación lineal). Resultados: El factor más influyente es la variación de las laderas, que en su mayoría están orientadas al sur. El análisis morfométrico generó una forma rectilínea que indica un estado de “no equilibrio”. La mayoría de los arroyos están en orden 1. Los valores hidrológicos de los suelos varían significativamente con la pendiente, lo que, junto con la forma de la cuenca, provoca cambios en la recarga del agua subterránea debido a la infiltración. La cantidad de drenajes de orden 1 está relacionada con la permeabilidad del terreno y las características de infiltración. Los valores moderados de densidad de drenaje son un indicador de una mayor infiltración y un alto potencial de recarga de agua subterránea. Conclusiones: Las propiedades hidrológicas de la cuenca alta del río Páez están condicionadas por su morfometría, especialmente por las variaciones en las pendientes entre curvas de nivel y la dinámica de la red de drenaje. 
https://doi.org/10.22458/urj.v12i2.3142
PDF
HTML
EPUB

Citas

Abdulkareem, J., Pradhan, B., Sulaiman, W., & Jamil, N. (2018). Quantification of runoff as influenced by morphometric characteristics in a rural complex catchment. Earth Systems and Environment, 2, 145-162. DOI: 10.1007/s41748-018-0043-0

Al-Rowaily, S., El-Bana, M., & Al-Dujain, F. (2012). Changes in vegetation composition and diversity in relation to morphometry, soil and grazing on a hyper-arid watershed in the central Saudi Arabia. Catena, 97, 41-49. DOI: 10.1016/j.catena.2012.05.004

Altin, T., & Altin, B. (2011). Development and morphometry of drainage network in volcanic terrain, Central Anatolia, Turkey. Geomorphology, 125: 485-503. DOI: 10.1016/j.geomorph.2010.09.023

Asfaw, D., & Workineh, G. (2019). Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation. International Soil and Water Conservation Research, 7(2), 150-157. DOI: 10.1016/j.iswcr.2019.02.003

Bahrami, S., Capolongo, D., & Mofrad, M. (2020). Morphometry of drainage basins and stream network as an indicator of active fold growth (Gorm anticline, Fars Province, Iran). Geomorphology, 355, 1-20. DOI: 10.1016/j.geomorph.2020.107086

Bhatt, S., & Ahmed, S. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878-894. DOI: 10.1080/10106049.2013.868042

Campo, A., Aldalur, N., & Fernández, S. (2012). Morfometría fluvial aplicada a una cuenca urbana en Ingeniero White, República Argentina. Investigaciones Geográficas, (77), 7-17.

Chorley, R., Malm, D., & Pogorzelski, H. (1957). A new standard for estimating drainage basin shape. American Journal of Science, 255, 138-141.

Debelo, G., Tadele, K., & Koriche, S. (2017). Morphometric analysis to identify erosion prone areas on the Upper Blue Nile using GIS (Case study of Didessa and Jema sub-basin, Ethiopia). International Research Journal of Engineering and Technology, 4(8), 1773-1784.

Domínguez, F., & Mercado, T. 2020. Potential inifiltration and morphometry in Arroyo Grande basin, Sucre, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, 96, 21-31.

Fenta, A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Woldearegay, K. (2017). Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia. Applied Water Science, 7, 3825-3840.DOI: 10.1007/s13201-017-0534-4

Geroy, I., Gribb, M., Marshall, H., Chandler., D; Benner, S., & McNamara, J. (2011). Aspect influences on soil water retention and storage. Hydrological Processes, 25(25), 3836-3842. DOI: 10.1002/hyp.8281

Gray, D. (1961). Interrelationships of watershed characteristics. Journal of Geophysical Research, 66 (4), 1215-1223.

Gregory, K., & Walling, D. (1968). The variation of drainage density within a catchment. International Association of Scientific Hydrology Bulletin, 13(2), 61-68.

Hack, J. (1973). Stream-profile and stream-gradient index. Journal of Research United States Geological Survey, 1(4), 421-429.

Horton, R. (1932). Drainage-basins characteristics. Transactions American Geophysical Union, 13(1), 350-361.

Horton, R. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275-370.

Kabite, G., & Gessesse, B. (2018). Hydro-geomorphological characterization of Dhidhessa river basin, Ethiopia. International Soil and Water Conservation Research, 6(2), 175-183. DOI: 10.1016/j.iswcr.2018.02.003

Knight, J., & Grab, S. (2018). Drainage network morphometry and evolution in the eastern Lesotho highlands, southern Africa. Quaternary International, 470 (part A), 4-17. DOI: 10.1016/j.quaint.2017.07.024

Krushensky, R. (1972). Geology of Istaru Quadrangle, Costa Rica. Washington: United States Geological Survey. DOI: 10.3133/b1358

Kumar, P., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. (2014). A GIS-based approach in drainage morphometric analysis of Kanhar river basin, India. Applied Water Science, 7:16.

Kumar, P., & Joshi, V. (2015). Characterization of hydro geological behavior of the upper watershed of river Subarnarekha through morphometric analysis using remote sensing and GIS approach. International Journal of Environmental Sciences, 6(4), 429-447. DOI: 10.6088/ijes.6049

Langbein, W. (1947). Topographic characteristic of drainage basins. Water-Supply Paper United States Geological Survey 968-C: 125-157.

Liaqat, R., Rehman, A., & Alia, Y. (2011). Morphometric analysis of drainage basin using remote sensing and GIS techniques: A case study of Etmadpur Tehsil, Agra district, U.P. International Journal of Research in Chemistry and Environment, 1(2), 36-45.

Miller, V. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch mountain area. New York: Columbia University.

Morbidelli, R., Saltalippi, C., Flammini, A., Cifrodelli, M., Picciafouco, T., Corradini, C., & Govindaraju, R. (2019). Laboratory investigation on the role of slope on infiltration over grassy soils. Journal of Hydrology, 543 (part B), 542-547. DOI: 10.1016/j.jhydrol.2016.10.024

Pike, R., & Wilson, S. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079-1084. DOI: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2

Prabhakaran, A., & Raj, N. (2018). Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Applied Water Science, 8(1),31. DOI: 10.1007/s13201-018-0646-5

Rai, P., Chandel, R., Mishra, V., & Singh, P. (2018). Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Applied Water Science, 8, 15. DOI: 10.1007/s13201-018-0660-7.

Ribolzi, O., Patin, J., Brenson, L., Latsachack, K., Mouche, E., Sengtaheuanghoung, O., Silvera, N., Thiébaux, J., & Valentin, C. (2011). Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 127(1-2), 127: 53-63. DOI: 10.1016/j.geomorph.2010.12.004.

Roche, M. (1963). Hydrologie de Surface. París: Guathier-Villars Editeur.

Romshoo, S., Bhat, S., & Rashid, I. (2012). Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus basin. Journal of Earth System Science, 121, 659-686. DOI: 10.1007/s12040-012-0192-8

Sakthievel, R., Raj, N., Sivasankar, V., Akhila, P., & Omine, K. (2019). Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India. Applied Water Science, 9(1), 24. DOI: 10.1007/s13201-019-0899-7

Schumm, S. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67(5): 597-646. DOI: 10.1130/00167606(1956)67[597:EODSAS]2.0.CO;2

Singh, P., Gupta, A., & Singh, M. (2014). Hydrological inferences from watershed analysis for water resources management using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 17(5), 111-121. DOI: 10.1016/j.ejrs.2014.09.003

Soni, S. (2016). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7, 2089-2102. DOI: 10.1007/s13201-016-0395-2

Strahler, A. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 53(11), 1117-1142. DOI: 10.1130/00167606(1952)63 [1117: HAAOET] 2.0.CO;2

Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Transaction American Geophysical Union, 38(6), 913-920. DOI: 10.1029/TR038i006p00913

Zaidi, F. (2011). Drainage basin morphometry for identifying zones for artificial recharge: A case study from the Gagas River Basin, India. Journal Geological Society of India, 77, 160-166. DOI: 10.1007/s12594-011-0019-2

Zăvoianu, I. (1985). Morphometry of Drainage Basins. Amsterdam: Elsevier.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.