Correlation among risk factors for cardiovascular disease in 1084 Costa Rican couples. The CRELES-RC project.

Correlation among risk factors for cardiovascular disease in 1084 Costa Rican couples. The CRELES-RC project.

Authors

DOI:

https://doi.org/10.22458/urj.v12i2.3106

Keywords:

sex, spouse, risk factor, cardiovascular disease, spousal concordance

Abstract

Introduction: Marital environment can contribute to similarities in lifestyle and morbidity between spouses, as they share common life habits and health risks. Objective: To investigate concordance between various risk factors for cardiovascular disease in couples of Costa Rican spouses. Methods: We analyzed 1084 couples from the Costa Rican Longevity and Healthy Aging Study. We used Pearson´s correlation coefficients, and Multivariate within-pair correlations obtained by analyzing dyadic data in the context of the Actor-Partner Interdependence Model (APIM). To estimate the APIM we used structural equation models, and logistic regression analyses to calculate the odds ratio of a spouse’s presenting one risk factor on the basis of the other spouse’s risk factor status. Results: After adjustment for age, smoking and physical activity, the strongest spousal concordance was for body mass index (r = 0,108, 95% confidence interval: 0,04 - 0,14) and the lowest for C reactive protein (r = 0,067: 0,01 - 0,16). People whose spouse has diabetes, hypertension, central adiposity, high body mass index or inflammation are more likely to have the same disease. The adjusted odds ratios were 2,837 (95% confidence interval: 2,02 – 3,98) for diabetes; 1,357 (1,06 – 1,74) for hypertension; 1,508 (1,08 – 2,10) for central adiposity; 1,777 (1,25 – 2,53) for high body mass index; and 1,357 (1,02 – 1,80) for inflammation. Conclusions: There is a small, but significant, spousal concordance between the different risk factors for cardiovascular disease.

References

Aguilar, E., & Carballo, A. (2020). Factores asociados a la Proteína C en la población costarricense nacida entre 1945 y 1955. Población y Salud en Mesoamérica, 17(2). DOI: 10.15517/psm.v17i2.39798.

American Diabetes Association, (2018). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care 42(1), 13–28. DOI: 10.2337/dc18-S002

Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Second Edition. Hillsdate, NJ: LEA. Recuperado de http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf.

Cook, W. L., & Kenny, D. A. (2005). The actor-partner interdependence model: a model of bidirectional effects in developmental studies. International Journal of Behavioral Development, 29(2), 101–109. DOI: 10.1080/01650250444000405

Di Castelnuovo, A., Quacquaruccio, G., Arnout, J., Cappuccio, F. P., de Lorgeril, M., Dirckx, C., ... Venezia, A. (2007). Cardiovascular risk factors and global risk of fatal cardiovascular disease are positively correlated between partners of 802 married couples from different European countries: Report from the IMMIDIET project. Thrombosis and Haemostasis, 98(3), 648-655. DOI: 10.1160/TH07-01-0024

Di Castelnuovo, A., Quacquaruccio, G., Donati, M.B., de Gaetano, G., & Iacoviello, L. (2009). Spousal concordance for major coronary risk factors: a systematic review and meta-analysis. American Journal of Epidemiogy, 169(1), 1–8. DOI: 10.1093/aje/kwn234

Dow, W.H., Brenes, G., & Rosero, L. (2013). CRELES: Costa Rican Longevity and Healthy Aging Study, Retirement Cohort. Methods, Wave 1. Berkeley, CA: Department of Demography, University of California, Berkeley. Recuperado de http://www.creles.berkeley.edu

Fitzpatrick, J., Gareau, A., Lafontaine, M. F., & Gaudreau, P. (2016). How to Use the Actor-Partner Interdependence Model (APIM) To Estimate Different Dyadic Patterns in MPLUS: A Step-by-Step Tutorial. The Quantitative Methods for Psychology, 12(1), 74-86. DOI: 10.20982/tqmp.12.1.p074

Hippisley-Cox, J., Coupland, C., Pringle, M., Crown, N., & Hammersley, V. (2002). Married couples' risk of same disease: cross sectional study. BMJ (Clinical research ed.), 325(7365), 636. DOI: 10.1136/bmj.325.7365.636

Jee, S.H., Suh, I, Won, S.Y., & Kim, M. (2002). Familial correlation and heritability for cardiovascular risk factors. Yonsei Medical Journal, 43(2), 160–164. DOI: 10.3349/ymj.2002.43.2.160

Jurj, A., Wen, W., Li, H., Zheng, W., Yang, G., Xiang, Y., … Shu, X. (2006). Spousal correlations for lifestyle factors and selected diseases in Chinese couples. Annals of Epidemiology 16,(4), 285–291. DOI: 10.1016/j.annepidem.2005.07.060

Kim, H., Kang, D., Choi, K., Nam, C., Thomas, G., & Suh, I. (2006). Spousal concordance of metabolic syndrome in 3141 Korean couples: a nationwide survey. Annals of Epidemiology, 16(4), 292–298. DOI: 10.1016/j.annepidem.2005.07.052

Lee M.H., Kim H.C., Thomas G.N., Ahn S.V., Hur N.W., Choi D.P., & Suh I. (2011). Familial concordance of metabolic syndrome in Korean population-Korean National Health and Nutrition Examination Survey 2005. Diabetes Research and Clinical Practice, 93(3), 430-436. DOI: 10.1016/j.diabres.2011.06.002

McAdams, M., Coresh, J., Woodward, M., Butler, K. R., Kao, W. H., Mosley, T. H., … Anderson, C. A. (2011). Hypertension status, treatment, and control among spousal pairs in a middle-aged adult cohort. American journal of epidemiology, 174(7), 790-796. DOI: 10.1093/aje/kwr167

O'Doherty, M., Jørgensen, T., Borglykke, A., Brenner, H., Schöttker, B., Wilsgaard, T., . . . Kee, F. (2014). Repeated measures of body mass index and C-reactive protein in relation to all-cause mortality and cardiovascular disease: Results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). European Journal of Epidemiology, 29(12), 887-897. DOI: 10.1007/s10654-014-9954-8

Oikawa, T., Sakata, Y., Nochioka, K., Miura, M., Abe R., Kasahara, S., … Hiroaki Shimokawa, H. (2019). Association between temporal changes in C-reactive protein levels and prognosis in patients with previous myocardial infarction- A report from the CHART-2 Study. International Journal of Cardiology, 293, 17–24. DOI: 10.1016/j.ijcard.2019.07.022

Pearson, T., Mensah, G., Alexander, R., Anderson, J., Cannon, R., Criqui, M., … Vinicor, F. (2003). Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation, 107(3), 499-511. DOI: 10.1161/01.CIR.0000052939.59093.45

Qureshi, A., Fareed, M., Suri, K., Kirmani, J., & Divani, A. (2005). Cigarette smoking among spouses: another risk factor for stroke in women. Stroke, 36(9), 74–76. DOI: 10.1161/01.STR.0000177475.30281.7f

Ridker, P., Cushman, M., Stampfer, M., Tracy, R., & Hennekens, C. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine, 336, 973–979. DOI: 10.1056/NEJM199704033361401

Rosengren A, Hawken S, Ounpuu S, Sliwa, K., Zubaid, M., Almahmeed, W., … Yusuf, S. (2004). Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. The Lancet, 364(9438), 953-962. Recuperado de: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.630.1236&rep=rep1&type=pdf

Saleh, N., Svane, B., Hansson, L., Jensen, J., Nilsson, T., Danielsson, O., & Tornvall, P. (2005). Response of serum C-reactive protein to percutaneous coronary intervention has prognostic value. Clinical Chemistry, 51, 2124–2130. DOI: 10.1373/clinchem.2005.048082

Smith, S. Benjamin, E., Bonow, R., Braun, L., Creager, M., Franklin, B., … Taubert, K. (2011). AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update: A Guideline From the American Heart Association and American College of Cardiology Foundation Endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology, 58(23), 2432-2446. DOI: 10.1016/j.jacc.2011.10.824

Stas, L., Kenny, D. A., Mayer, A., & Loeys, T. (2018). Giving Dyadic Data Analysis Away: A User-Friendly App for Actor-Partner Interdependence Models. Personal Relationships, 25(1), 103-119. DOI: 10.1111/pere.12230

Published

2020-10-21

How to Cite

Aguilar Fernández, E., & Carballo Alfaro, A. M. (2020). Correlation among risk factors for cardiovascular disease in 1084 Costa Rican couples. The CRELES-RC project. UNED Research Journal, 12(2), e3106. https://doi.org/10.22458/urj.v12i2.3106

Issue

Section

Articles
Loading...