Correlation among risk factors for cardiovascular disease in 1084 Costa Rican couples. The CRELES-RC project.
DOI:
https://doi.org/10.22458/urj.v12i2.3106Keywords:
sex, spouse, risk factor, cardiovascular disease, spousal concordanceAbstract
Introduction: Marital environment can contribute to similarities in lifestyle and morbidity between spouses, as they share common life habits and health risks. Objective: To investigate concordance between various risk factors for cardiovascular disease in couples of Costa Rican spouses. Methods: We analyzed 1084 couples from the Costa Rican Longevity and Healthy Aging Study. We used Pearson´s correlation coefficients, and Multivariate within-pair correlations obtained by analyzing dyadic data in the context of the Actor-Partner Interdependence Model (APIM). To estimate the APIM we used structural equation models, and logistic regression analyses to calculate the odds ratio of a spouse’s presenting one risk factor on the basis of the other spouse’s risk factor status. Results: After adjustment for age, smoking and physical activity, the strongest spousal concordance was for body mass index (r = 0,108, 95% confidence interval: 0,04 - 0,14) and the lowest for C reactive protein (r = 0,067: 0,01 - 0,16). People whose spouse has diabetes, hypertension, central adiposity, high body mass index or inflammation are more likely to have the same disease. The adjusted odds ratios were 2,837 (95% confidence interval: 2,02 – 3,98) for diabetes; 1,357 (1,06 – 1,74) for hypertension; 1,508 (1,08 – 2,10) for central adiposity; 1,777 (1,25 – 2,53) for high body mass index; and 1,357 (1,02 – 1,80) for inflammation. Conclusions: There is a small, but significant, spousal concordance between the different risk factors for cardiovascular disease.
References
Aguilar, E., & Carballo, A. (2020). Factores asociados a la Proteína C en la población costarricense nacida entre 1945 y 1955. Población y Salud en Mesoamérica, 17(2). DOI: 10.15517/psm.v17i2.39798.
American Diabetes Association, (2018). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care 42(1), 13–28. DOI: 10.2337/dc18-S002
Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Second Edition. Hillsdate, NJ: LEA. Recuperado de http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf.
Cook, W. L., & Kenny, D. A. (2005). The actor-partner interdependence model: a model of bidirectional effects in developmental studies. International Journal of Behavioral Development, 29(2), 101–109. DOI: 10.1080/01650250444000405
Di Castelnuovo, A., Quacquaruccio, G., Arnout, J., Cappuccio, F. P., de Lorgeril, M., Dirckx, C., ... Venezia, A. (2007). Cardiovascular risk factors and global risk of fatal cardiovascular disease are positively correlated between partners of 802 married couples from different European countries: Report from the IMMIDIET project. Thrombosis and Haemostasis, 98(3), 648-655. DOI: 10.1160/TH07-01-0024
Di Castelnuovo, A., Quacquaruccio, G., Donati, M.B., de Gaetano, G., & Iacoviello, L. (2009). Spousal concordance for major coronary risk factors: a systematic review and meta-analysis. American Journal of Epidemiogy, 169(1), 1–8. DOI: 10.1093/aje/kwn234
Dow, W.H., Brenes, G., & Rosero, L. (2013). CRELES: Costa Rican Longevity and Healthy Aging Study, Retirement Cohort. Methods, Wave 1. Berkeley, CA: Department of Demography, University of California, Berkeley. Recuperado de http://www.creles.berkeley.edu
Fitzpatrick, J., Gareau, A., Lafontaine, M. F., & Gaudreau, P. (2016). How to Use the Actor-Partner Interdependence Model (APIM) To Estimate Different Dyadic Patterns in MPLUS: A Step-by-Step Tutorial. The Quantitative Methods for Psychology, 12(1), 74-86. DOI: 10.20982/tqmp.12.1.p074
Hippisley-Cox, J., Coupland, C., Pringle, M., Crown, N., & Hammersley, V. (2002). Married couples' risk of same disease: cross sectional study. BMJ (Clinical research ed.), 325(7365), 636. DOI: 10.1136/bmj.325.7365.636
Jee, S.H., Suh, I, Won, S.Y., & Kim, M. (2002). Familial correlation and heritability for cardiovascular risk factors. Yonsei Medical Journal, 43(2), 160–164. DOI: 10.3349/ymj.2002.43.2.160
Jurj, A., Wen, W., Li, H., Zheng, W., Yang, G., Xiang, Y., … Shu, X. (2006). Spousal correlations for lifestyle factors and selected diseases in Chinese couples. Annals of Epidemiology 16,(4), 285–291. DOI: 10.1016/j.annepidem.2005.07.060
Kim, H., Kang, D., Choi, K., Nam, C., Thomas, G., & Suh, I. (2006). Spousal concordance of metabolic syndrome in 3141 Korean couples: a nationwide survey. Annals of Epidemiology, 16(4), 292–298. DOI: 10.1016/j.annepidem.2005.07.052
Lee M.H., Kim H.C., Thomas G.N., Ahn S.V., Hur N.W., Choi D.P., & Suh I. (2011). Familial concordance of metabolic syndrome in Korean population-Korean National Health and Nutrition Examination Survey 2005. Diabetes Research and Clinical Practice, 93(3), 430-436. DOI: 10.1016/j.diabres.2011.06.002
McAdams, M., Coresh, J., Woodward, M., Butler, K. R., Kao, W. H., Mosley, T. H., … Anderson, C. A. (2011). Hypertension status, treatment, and control among spousal pairs in a middle-aged adult cohort. American journal of epidemiology, 174(7), 790-796. DOI: 10.1093/aje/kwr167
O'Doherty, M., Jørgensen, T., Borglykke, A., Brenner, H., Schöttker, B., Wilsgaard, T., . . . Kee, F. (2014). Repeated measures of body mass index and C-reactive protein in relation to all-cause mortality and cardiovascular disease: Results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). European Journal of Epidemiology, 29(12), 887-897. DOI: 10.1007/s10654-014-9954-8
Oikawa, T., Sakata, Y., Nochioka, K., Miura, M., Abe R., Kasahara, S., … Hiroaki Shimokawa, H. (2019). Association between temporal changes in C-reactive protein levels and prognosis in patients with previous myocardial infarction- A report from the CHART-2 Study. International Journal of Cardiology, 293, 17–24. DOI: 10.1016/j.ijcard.2019.07.022
Pearson, T., Mensah, G., Alexander, R., Anderson, J., Cannon, R., Criqui, M., … Vinicor, F. (2003). Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation, 107(3), 499-511. DOI: 10.1161/01.CIR.0000052939.59093.45
Qureshi, A., Fareed, M., Suri, K., Kirmani, J., & Divani, A. (2005). Cigarette smoking among spouses: another risk factor for stroke in women. Stroke, 36(9), 74–76. DOI: 10.1161/01.STR.0000177475.30281.7f
Ridker, P., Cushman, M., Stampfer, M., Tracy, R., & Hennekens, C. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. The New England Journal of Medicine, 336, 973–979. DOI: 10.1056/NEJM199704033361401
Rosengren A, Hawken S, Ounpuu S, Sliwa, K., Zubaid, M., Almahmeed, W., … Yusuf, S. (2004). Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. The Lancet, 364(9438), 953-962. Recuperado de: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.630.1236&rep=rep1&type=pdf
Saleh, N., Svane, B., Hansson, L., Jensen, J., Nilsson, T., Danielsson, O., & Tornvall, P. (2005). Response of serum C-reactive protein to percutaneous coronary intervention has prognostic value. Clinical Chemistry, 51, 2124–2130. DOI: 10.1373/clinchem.2005.048082
Smith, S. Benjamin, E., Bonow, R., Braun, L., Creager, M., Franklin, B., … Taubert, K. (2011). AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update: A Guideline From the American Heart Association and American College of Cardiology Foundation Endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology, 58(23), 2432-2446. DOI: 10.1016/j.jacc.2011.10.824
Stas, L., Kenny, D. A., Mayer, A., & Loeys, T. (2018). Giving Dyadic Data Analysis Away: A User-Friendly App for Actor-Partner Interdependence Models. Personal Relationships, 25(1), 103-119. DOI: 10.1111/pere.12230
Published
How to Cite
Issue
Section
License
Note: This abstract contains an incorrect copyright due to technical issues. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
All journal contents are freely available through a CC BY 4.0 license.
CC BY 4.0 is a Creative Commons: you can copy, modify, distribute, and perform, even for commercial reasons, without asking permission, if you give appropriate credit.
Contents can be reproduced if the source and copyright are acknowledged according to the Open Access license CC BY 4.0. Self-storage in preprint servers and repositories is allowed for all versions. We encourage authors to publish raw data and data logs in public repositories and to include the links with all drafts so that reviewers and readers can consult them at any time.
The journal is financed by public funds via Universidad Estatal a Distancia and editorial independence and ethical compliance are guaranteed by the Board of Editors, UNED. We do not publish paid ads or receive funds from companies.