Diurnal microclimatic behavior, during the dry season, of three structures for protected agriculture in the dry tropics

Diurnal microclimatic behavior, during the dry season, of three structures for protected agriculture in the dry tropics

Authors

  • Edwin Andres Villagrán Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitata, Mosquera, Cundinamarca, Colombia. https://orcid.org/0000-0003-1860-5932
  • Rommel Igor León pacheco Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Caribia, Sevilla, Zona Bananera, Magdalena, Colombia. https://orcid.org/0000-0002-9928-5282
  • Roberto Ramírez Matarrita Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria de Costa Rica - INTA, Estación Experimental Enrique Jiménez Núñez, Cañas, Guanacaste, Costa Rica. https://orcid.org/0000-0001-9843-8999
  • Jorge Eliecer Jaramillo Noreña Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación La Selva, Rionegro, Antioquia, Colombia. https://orcid.org/0000-0003-2515-5706

DOI:

https://doi.org/10.22458/urj.v12i2.2854

Keywords:

Airflow pattern, Temperature, Relative humidity, Family farming, Simulation

Abstract

Introduction: In Costa Rica, the use of protected agricultural structures for horticultural production has increased in recent years, although there is little information on their microclimatic behavior. Objective: Our objective was to evaluate the behavior of airflow patterns and their effect on the spatial distribution of temperature and relative humidity inside three types of protected agricultural structure designed for family farming systems. Methods: The study was done in Guanacaste, Costa Rica, in the dry season of 2019, with a computational fluid dynamics model for the development of nine steady state simulations. The 3D model was experimentally validated by collecting climate information in each of the structure prototypes. Results: For the three structures, the goodness-of-fit parameters between measured and simulated data showed mean absolute error and root mean square error values of  0,21-0,44 °C and 1,65-3,40 % relative humidity.  Measured and simulated data had the same trends in the showed; the air flow patterns inside the structures were highly dependent on external wind speed and direction. The temperature and relative humidity conditions inside the three structures had a considerably homogeneous behavior. Conclusions: In the three small protected agricultural structures tested, which are usually used in family agriculture,  no significant differences were found for thermal and hygrometric behavior inside each of the structures  under these testing conditions. 

References

Ansys. (2016). ANSYS ICEM CFD User Manual. In Knowledge Creation Diffusion Utilization (Vol. 15317, Issue October). DOI: 10.1016/j.joen.2015.02.033.

Ali, H. B., Bournet, P. E., Cannavo, P., & Chantoiseau, E. (2018). Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics in Agriculture, 149, 26-40. DOI: 10.17660/ActaHortic.2018.1227.5.

Baeza, E. J., Pérez-Parra, J. J., Montero, J. I., Bailey, B. J., López, J. C., & Gázquez, J. C. (2009). Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosystems Engineering, 104(1), 86–96. DOI: 10.1016/J.BIOSYSTEMSENG.2009.04.008.

Bañuelos-Ruedas, F., Ángeles-Camacho, C., & Rios-Marcuello, S. (2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renewable and Sustainable Energy Reviews,14(8), 2383-2391. DOI: 10.1016/j.rser.2010.05.001.

Baptista, F. J., Bailey, B. J., & Meneses, J. F. (2012). Effect of nocturnal ventilation on the occurrence of Botrytis cinerea in Mediterranean unheated tomato greenhouses. Crop Protection, 32, 144–149. DOI: 10.1016/j.cropro.2011.11.005.

Bartzanas, T., Katsoulas, N., & Kittas, C. (2012). Solar radiation distribution in screenhouses: A CFD approach. Acta Horticulturae, 956, 449–456. DOI: 10.17660/ActaHortic.2012.956.52

Espinal-Montes, V., Lorenzo López-Cruz, I., Rojano-Aguilar, A., Romantchik-Kriuchova, E., & Ramírez-Arias, A. (2015). Determination of night-time thermal gradients in a greenhouse using computational thermal dynamics. Agrociencia, 49, 233–247.

Espinoza, K., López, A., Valera, D. L., Molina-Aiz, F. D., Torres, J. A., & Peña, A. (2017). Effects of ventilator configuration on the flow pattern of a naturally-ventilated three-span Mediterranean greenhouse. Biosystems Engineering, 164, 13–30. DOI: 10.1016/j.biosystemseng.2017.10.001

Flores-Velazquez, J., & Montero, J. I. (2008). Computational fluid dynamics (CFD) study of large scale screenhouses. Acta Horticulturae, 797, 117–122. DOI: 10.17660/ActaHortic.2008.797.14.

Flores-Velázquez, J., Mejía-Saenz, E., Montero-Camacho, J. I., & Rojano, A. (2011). Analísis nuḿrico del clima interior en un invernadero de tres naves con ventilacín mećnica. Agrociencia, 45(5), 545–560.

Flores-Velazquez, J., Guerrero, F. V., Lopez, I. L., Montero, J. I., & Piscia, D. (2013). 3-Dimensional thermal analysis of a screenhouse with plane and multispan roof by using computational fluid dynamics (CFD). Acta Horticulturae, 1008, 151–158. DOI: 10.17660/ActaHortic.2013.1008.19.

Flores-Velazquez, J., Ojeda, W., Villarreal-Guerrero, F., & Rojano, A. (2017). Effect of crops on natural ventilation in a screenhouse evaluated by CFD simulations. Acta Horticulturae, 1170, 95–101. DOI: 10.17660/ActaHortic.2017.1170.10.

He, X., Wang, J., Guo, S., Zhang, J., Wei, B., Sun, J., & Shu, S. (2017). Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149,16-25 DOI: 10.1016/j.compag.2017.10.001

Kim, K., Yoon, J. Y., Kwon, H. J., Han, J. H., Eek Son, J., Nam, S. W., Giacomelli, G. A., & Lee, I. B. (2008). 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosystems Engineering, 100(2), 245–255. DOI: 10.1016/j.biosystemseng.2008.03.006

Ma, D., Carpenter, N., Maki, H., Rehman, T. U., Tuinstra, M. R., & Jin, J. (2019). Greenhouse environment modeling and simulation for microclimate control. Computers and Electronics in Agriculture, 162, 134-142. DOI: 10.1016/j.compag.2019.04.013

MAG. (2018). Boletín del programa nacional sectorial de producción agrícola bajo ambientes protegidos. Recuperado de http://www.mag.go.cr/acerca_del_mag/estructura/oficinas/prog-nac-aprot.html.

Majdoubi, H., Boulard, T., Fatnassi, H., & Bouirden, L. (2009). Airflow and microclimate patterns in a one-hectare Canary type greenhouse: an experimental and CFD assisted study. Agricultural and Forest Meteorology, 149(6–7), 1050–1062. DOI:10.1016/j.agrformet.2009.01.002.

McCartney, L., & Lefsrud, M. G. (2018). Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosystems Engineering, 174, 159–172. DOI: 10.1016/j.biosystemseng.2018.07.004.

Mesmoudi, K., Meguallati, K., & Bournet, P. (2017). Effect of the greenhouse design on the thermal behavior and microclimate distribution in greenhouses installed under semi-arid climate. Heat Transfer-Asian Research. DOI: 10.1002/htj.21274.

Molina-Aiz, F. D., Valera, D. L., Peña, A. A., Gil, J. A., & López, A. (2009). A study of natural ventilation in an Almería-type greenhouse with insect screens by means of tri-sonic anemometry. Biosystems Engineering, 104(2), 224–242. DOI: 10.1016/j.biosystemseng.2009.06.013.

Molina-Aiz, F. D., Valera, D. L., & López, A. (2011). Airflow at the openings of a naturally ventilated Almería-type greenhouse with insect-proof screens. Acta Horticulturae, 893, 545–552. DOI: 10.17660/ActaHortic.2011.893.56.

Molina-Aiz, F. D., Norton, T., López, A., Reyes-Rosas, A., Moreno, M. A., Marín, P., Espinoza, K., & Valera, D. L. (2017). Using computational fluid dynamics to analyse the CO2 transfer in naturally ventilated greenhouses. Acta Horticulturae, 1182, 283–292. DOI:10.17660/ActaHortic.2017.1182.34

Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12), 2386–2414. DOI: 10.1016/j.biortech.2006.11.025.

Perén, J. I., van Hooff, T., Leite, B. C. C., & Blocken, B. (2016). CFD simulation of wind-driven upward cross ventilation and its enhancement in long buildings: Impact of single-span versus double-span leeward sawtooth roof and opening ratio. Building and Environment, 96, 142–156. DOI: 10.1016/j.buildenv.2015.11.021.

Piscia, D., Muñoz, P., Panadès, C., & Montero, J. I. (2015). A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115, 129–141. DOI: 10.1016/J.COMPAG.2015.05.005.

Ramírez-Vargas, C., & Nienhuis, J. (2012). Evaluación del crecimiento y productividad del tomate (Lycopersicon esculentum Mill) bajo cultivo protegido en tres localidades de Costa Rica. Revista Tecnología En Marcha, 25(1), 3-15.

Rojas Rishor, A. (2015). Análisis del comportamiento térmico de un invernadero construido en ladera, aplicando dinámica de fluidos computacional. (Tesis de pregrado, Universidad De Costa Rica, San José, Costa Rica). Recuperado de http://repositorio.sibdi.ucr.ac.cr:8080/jspui/bitstream/123456789/2946/1/38803.pdf

Saberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy, 138, 722-737 DOI: 10.1016/j.renene.2019.01.108.

Teitel, M., Dvorkin, D., Haim, Y., Tanny, J., & Seginer, I. (2009). Comparison of measured and simulated flow through screens: Effects of screen inclination and porosity. Biosystems Engineering, 104(3), 404–416. DOI: 10.1016/j.biosystemseng.2009.07.006.

Teitel, M., & Wenger, E. (2014). Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosystems Engineering, 119, 98–107. DOI: 10.1016/j.biosystemseng.2013.11.001.

Teitel, M., Garcia-Teruel, M., Ibanez, P. F., Tanny, J., Laufer, S., Levi, A., & Antler, A. (2015). Airflow characteristics and patterns in screenhouses covered with fine-mesh screens with either roof or roof and side ventilation. Biosystems Engineering, 131, 1–14. DOI: 10.1016/j.biosystemseng.2014.12.010

Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10–11), 1749–1761. DOI: 10.1016/j.jweia.2008.02.058.

Tong, G., & Christopher, D. M. (2018). New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149, 3–15. DOI: 10.1016/J.COMPAG.2017.09.031.

Tong, G., Christopher, D. M., & Zhang, G. (2018). New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149, 3–15. DOI: 10.1016/j.compag.2017.09.031.

Valera, D. L., Álvarez, A. J., & Molina, F. D. (2006). Aerodynamic analysis of several insect-proof screens used in greenhouses. Spanish Journal of Agricultural Research, 4(4), 273–279. DOI: 10.5424/sjar/2006044-204.

Villagrán, E.A., Gil, R., Acuña, J. F., & Bojacá, C. R. (2012). Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse. Agronomia Colombiana, 30(2), 282-288.

Villagran, E., & Bojaca, C. (2019a). CFD Simulation of the Increase of the Roof Ventilation Area in a Traditional Colombian Greenhouse: Effect on Air Flow Patterns and Thermal Behavior. International Journal of Heat and Technology, 37(3), 881-892. DOI:10.18280/ijht.370326.

Villagrán, E, A., Baeza Romero, E. J., & Bojacá, C. R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering. 188, 288-304. DOI:10.1016/j.biosystemseng.2019.10.026.

Villagrán, E,A., & Bojacá, C. R. (2019b). Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133–143. DOI:10.14295/oh.v25i2.2013.

Villagrán Munar, E. A., & Bojacá Aldana, C. R. (2019). Simulacion del microclima en un invernadero usado para la producción de rosas bajo condiciones de clima intertropical. Chilean Journal of Agricultural & Animal Sciences, 35(2), 137–150. DOI:10.4067/s0719-38902019005000308.

Villagrán, E., Ramirez, R., Rodriguez, A., Pacheco, R. L., & Jaramillo, J. (2020). Simulation of the Thermal and Aerodynamic Behavior of an Established Screenhouse under Warm Tropical Climate Conditions: A Numerical Approach. International Journal of sustainable development and Planning, 15(4), 487-499. DOI: 10.18280/ijsdp.150409.

Published

2020-10-13

How to Cite

Villagrán, E. A., León pacheco, R. I., Ramírez Matarrita, R., & Jaramillo Noreña, J. E. (2020). Diurnal microclimatic behavior, during the dry season, of three structures for protected agriculture in the dry tropics. UNED Research Journal, 12(2), e2854. https://doi.org/10.22458/urj.v12i2.2854

Issue

Section

Articles
Loading...