Nitrate monitoring in oil palm drainages (Elaeis guineensis): A tool for crop sustainability

Nitrate monitoring in oil palm drainages (Elaeis guineensis): A tool for crop sustainability

Authors

DOI:

https://doi.org/10.22458/urj.v12i1.2807

Keywords:

palm oil, fertilization, nitrates, sustainable agriculture, precision agriculture, natural resources

Abstract

Introduction: Most nitrogen added in fertilizers to oil palm plantations (Elaeis guineensis) is lost by storm drainage or nitrate leaching, which impacts receiving water bodies and associated ecosystems. Losses could affect the sustainable development of the activity. Objective: This work evaluates the nitrates monitoring in agricultural drains of an oil palm crop, as a tool for decision making of fertilizer application and loss reduction. Methodology: We analyzed the concentration of nitrates in four drains located in soil with palm cultivation of different textural class, and homogeneous conditions of plantation age, climate and fertilization type, before and after fertilization events. We estimated the nitrate load, QNO3- (mg s-1), statistical and trend differences in drainages. Results: QNO3- increases after fertilization, nevertheless, there is a significant difference in the in the variance of the groups (0.000033, alpha = 0.05) determined by the variation of QNO3- of the drainage located in soil of clay textural class (Q4). The QNO3- exhibits a more positive rate followed of a more negative decrease after fertilization in Q4 than in the drainage of sandy textural class. Discussion: The differences of QNO3- in the drainages are related to the textural class of the drained soil, the development of the roots and the depth at which the washing, assimilation, leaching and nitrate processing processes occur. Conclusion: The monitoring of nitrates in the drains of this crop allows to estimate the tendency of QNO3- related to the textural class of the soil, and to visualize the rate of losses by leaching or pluvial washing. We recommend monitoring of QNO3-in oil palm drains to make decisions about reduced or delayed fertilizer application in order to reduce losses.

References

Addiscott, T. M. (1996). Measuring and modelling nitrogen leaching: parallel problems. Plant and Soil, 181, 1-6. DOI: 10.1007/BF00011284

Albertazzi, H., & Ramírez, C. (2009). Soil characteristics and root development in young oil palms (Elaeis guineensis Jacq.) planted in sites affected by bud rots (pudrición del cogollo). ASD Oil Palm Papers, 33, 1-14.

Annandale, J. G., Preez, C. C. du, Stirzaker, R. J., Thorburn, P. J., Bristow, K. L., & van der Laan, M. (2013). Modelling nitrogen leaching: Are we getting the right answer for the right reason? Agricultural Water Management, 133, 74-80. DOI: 10.1016/j.agwat.2013.10.017

Boons, F., & Mendoza, A. (2010). Constructing sustainable palm oil: How actors define sustainability. Journal of Cleaner Production, 18(16-17), 1686-1695. DOI: 10.1016/j.jclepro.2010.07.003

Castellano, M. J., Kaye, J. P., Lin, H., & Schmidt, J. P. (2012). Linking carbon saturation concepts to nitrogen saturation and retention. Ecosystems, 15(2), 175-187. DOI: 10.1007/s10021-011-9501-3

CIA (Centro de Investigaciones Agronómicas). (2016). Mapa digital de suelos de Costa Rica. San José, CRI: CIA. Recuperado de http://www.cia.ucr.ac.cr/?page_id=139

Cleveland, C. C., & Liptzin, D. (2007). C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85(3), 235-252. DOI: 10.1007/s10533-007-9132-0

Colchester, M., Chao, S., Fon Achobang, C., Alaza, L., Ale, N., Anderson, P., … Priyani Widjaya, A. (2013). The Oil Palm Sector at a Crossroads Conflict or Consent. Retrieved from http://www.forestpeoples.org/sites/fpp/files/publication/2013/11/conflict-or-consentenglishlowres.pdf

Cunha, E. J., De Assis Montag, L. F., & Juen, L. (2015). Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecological Indicators, 52, 422-429. DOI: 10.1016/j.ecolind.2014.12.024

Dislich, C., Keyel, A. C., Salecker, J., Kisel, Y., Meyer, K. M., Auliya, M., … Wiegand, K. (2017). A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 92(3), 1539-1569. DOI: 10.1111/brv.12295

Dubos, B., Snoeck, D., & Flori, A. (2017). Excessive use of fertilizer can increase leaching processes and modify soil reserves in two ecuadorian oil palm plantations. Experimental Agriculture, 53(2), 255-268. DOI: 10.1017/S0014479716000363

Duran, N. & Ortiz, R. (1995). Efecto de algunas propiedades fisicas del suelo y la precipitación sobre la producción de la palma aceitera (Elaeis guineensis) en Centroamérica. Agronomía Mesoamericana, 6, 7-14., 7-14. DOI: 10.15517/AM.V6I0.24802

Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., … Amann, M. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B, 368, 20130164. DOI: 10.1098/rstb.2013.0164

Gallmetzer, N., & Schulze, C. H. (2015). Impact of oil palm agriculture on understory amphibians and reptiles: A Mesoamerican perspective. Global Ecology and Conservation, 4, 95-109. DOI: 10.1016/j.gecco.2015.05.008

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., … Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889-892. DOI: 10.1126/science.1136674

Hernández-Alpízar, L., & Coy-Herrera, R. (2015). Cuantificación de nitratos en agua potable para análisis en línea. Tecnología en Marcha. 28, 86-93. DOI: 10.18845/tm.v28i4.2446

Hoffmann, M. P., Donough, C. R., Cook, S. E., Fisher, M. J., Lim, C. H., Lim, Y. L., … Oberthür, T. (2017). Yield gap analysis in oil palm: Framework development and application in commercial operations in Southeast Asia. Agricultural Systems, 151, 12-19. DOI: 10.1016/j.agsy.2016.11.005

Instituto Nacional de Estadística y Censos (2015). VI Censo Nacional Agropecuario: Resultados Generales (1ed). San José, Costa Rica: INEC.

Khatun, R., Reza, M. I. H., Moniruzzaman, M., & Yaakob, Z. (2017). Sustainable oil palm industry: The possibilities. Renewable and Sustainable Energy Reviews, 76(August 2016), 608-619. DOI: 10.1016/j.rser.2017.03.077

Konopik, O., Gray, C. L., Grafe, T. U., Steffan-Dewenter, I., & Fayle, T. M. (2014). From rainforest to oil palm plantations: Shifts in predator population and prey communities, but resistant interactions. Global Ecology and Conservation, 2, 385-394. DOI: 10.1016/j.gecco.2014.10.011

Nainar, A., Chey, V. K., Aldridge, D. C., Walsh, R. P. D., Foster, W. A., Reynolds, G., … Bidin, K. (2016). The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology, 10(4), e1827. DOI: 10.1002/eco.1827

Nelson, P. N., Webb, M. J., Banabas, M., Nake, S., Goodrick, I., Gordon, J., … Dubos, B. (2014). Methods to account for tree-scale variability in soil- and plant-related parameters in oil palm plantations. Plant and Soil, 374(1-2), 459-471. DOI: 10.1007/s11104-013-1894-7

Oades, J. M. (1988). The retention of organic matter in soils. Biogeochemistry, 5(1), 35-70. DOI: 10.1007/BF02180317

Olivares, J., Bedmar, E. J., & Sanjuán, J. (2013). Biological Nitrogen Fixation in the Context of Global Change. Molecular Plant-Microbe Interactions, 26(5), 486-494. DOI: 10.1094/MPMI-12-12-0293-CR

Owens, P. R., Whisler, F. D., Jenkins, J. N., Thomasson, J. A., & Iqbal, J. (2005). Spatial Variability Analysis of Soil Physical Properties of Alluvial Soils. Soil Science Society of America Journal, 69(4), 1338. DOI: 10.2136/sssaj2004.0154

Pardon, L., Bockstaller, C., Marichal, R., Sionita, R., Nelson, P., Gabrielle, B., … Bessou, C. (2016). Modelling potential nitrogen losses in oil palm plantations with IN-Palm, an agri-environmental indicator. Environmental Modelling and Software for Supporting a Sustainable Future, 445-552. Retrieved from https://www.researchgate.net/publication/320988871_Modelling_potential_nitrogen_losses_in_oil_palm_plantations_with_IN-Palm_an_agri-environmental_indicator

Pardon, L., Ian Huth, N., Netelenbos Nelson, P., Banabas, M., Gabrielle, B., & Bessou, C. (2017). Yield and nitrogen losses in oil palm plantations: Main drivers and management trade-offs determined using simulation. Field Crops Research, 210(May), 20-32. DOI: 10.1016/j.fcr.2017.05.016

Peralta-Lobo, F., Vásquez, O., Richardson, D. L., Alvarado-Hernández, A., & Bornemisza-Steiner, E. (1985). Effect of some soil physical characteristics on yield, growth and nutrition of the oil palm in Costa Rica. Oléagineux, 40(8/9), 423-430.

Pirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the limits to oil palm expansion? Global Environmental Change, 40, 73-81. DOI: 10.1016/j.gloenvcha.2016.06.007

Reza, S. K., Nayak, D. C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S. K., & Srinivasan, R. (2016). Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of Agronomy and Soil Science, 62(7), 972-981. DOI: 10.1080/03650340.2015.1107678

Rist, L., Feintrenie, L., & Levang, P. (2010). The livelihood impacts of oil palm: Smallholders in Indonesia. Biodiversity and Conservation, 19(4), 1009-1024. DOI: 10.1007/s10531-010-9815-z

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E. F., ... & Nykvist, B. (2009). A safe operating space for humanity. Nature, 461(7263), 472. DOI: 10.1038/461472a

Román-Forastelli, M., & Angulo-Aguilar, J. E. (2013). Panorama socioeconómico de los cantones de Osa y Golfito: tendencias y desafíos para el desarrollo sostenible. Iniciativa Osa y Golfito. Stanford University: INOGO, Stanford Woods Institute for the Environment.

Schroth, G., Rodrigues, M. R. L., & D’Angelo, S. (2000). Spatial patterns of nitrogen mineralization, fertilizer distribution and roots explain nitrate leaching from mature Amazonian oil palm plantation. Soil Use and Management, 16(3), 222-229. DOI: 10.1111/j.1475-2743.2000.tb00197.x

SEPSA. (2016). Boletín Estadístico 2016. Retrieved from http://www.infoagro.go.cr/BEA/BEA26/BEA26.pdf

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... & Folke, C. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. DOI: 10.1126/science.1259855

Solano, J. & Villalobos, R. (2000). Regiones y subregiones climáticas de Costa Rica. San José, Costa Rica: Instituto Meteorológico Nacional.

United States Department of Agriculture (USDA). (2017). World Agricultural Production. Circular Series. Retrieved from http://apps.fas.usda.gov/psdonline/circulars/production.pdf

Van der Laan, M., Stirzaker, R. J., Annandale, J. G., Bristow, K. L., & Preez, C. C. (2010). Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses. Agricultural Water Management, 97(11), 1779-1786. DOI: 10.1016/j.agwat.2010.06.012

Walsh, R. P. D., Nainar, A., Bidin, K., Higton, S., Annammala, K. V, Blake, W., … Hanapi, J. (2016). Hydrogeomorphological and water quality impacts of oil palm conversion and logging in Sabah, Malaysian Borneo: a multi-catchment approach. Geophysical Research Abstracts, 18(4), EGU2016-18195. Retrieved from http://meetingorganizer.copernicus.org/EGU2016/EGU2016-18195.pdf

Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. DOI: 10.1016/j.eja.2016.11.002

Published

2020-03-13

How to Cite

Hernández Alpizar, L., Mora Molina, J., & Coy Herrera, R. (2020). Nitrate monitoring in oil palm drainages (Elaeis guineensis): A tool for crop sustainability. UNED Research Journal, 12(1), e2807. https://doi.org/10.22458/urj.v12i1.2807

Issue

Section

Articles
Loading...