Estimación de la producción láctea del ganado Jersey usando variables temporales, intrínsecas y ambientales
PDF
HTML
EPUB

Palabras clave

humedad relativa
temperatura ambiente
ganado lechero
Bos taurus
estrés calórico

Cómo citar

WingChing-Jones, R., & Conejo-Morales, J. F. (2020). Estimación de la producción láctea del ganado Jersey usando variables temporales, intrínsecas y ambientales. UNED Research Journal, 12(1), e2792. https://doi.org/10.22458/urj.v12i1.2792

Resumen

Introducción: Predecir el comportamiento de la producción láctea es una actividad constante en los sistemas de producción en busca del uso eficiente de los recursos. Objetivo: Generar un modelo matemático de predicción de la producción láctea que relacione las condiciones climáticas presentes en el momento que se recolectó la información y las características intrínsecas que presentaban los semovientes en dos sistemas de producción ubicados a 600 y 1 800m.s.n.m. en la provincia de Cartago, Costa Rica. Métodos: Utilizamos bases de datos generadas desde el 2003 al 2014, en el sistema ubicado a 660m.s.n.m. para un total de 61 animales, mientras que a 1 800m.s.n.m., la información la registramos entre 2011 al 2014, con el aporte de 387 animales. Resultados: Generamos tres ecuaciones bajo la hipótesis de que los productores no registran la información completa, la primera considera la interacción de las variables ambientales, temporales e intrínsecas del animal, mientras que las siguientes dos ecuaciones, separan el efecto ambiental y las características del animal. A 600m.s.n.m, la temperatura (-4,52), el número de lactancia (-0,99), la humedad relativa (-0,16), el mes (-0,14) y los días de lactancia (-0,02) presentaron un efecto negativo hacia la producción, mientras que la precipitación (0,0004), radiación (0,044), la edad del semoviente (0,084), y el índice de humedad y temperatura (2,68), favorecieron la productividad. En cambio a 1 800m.s.n.m., la radiación (-0,06), la humedad relativa (-0,04) y los días de lactancia (-0,03) disminuyeron la productividad del animal, por el contrario, la precipitación (0,02), el mes de evaluación (0,07) y el número de lactancia (0,57) la aumentaron. Conclusión: Estas ecuaciones son un insumo para que los responsables de los sistemas productivos, tengan una forma de seleccionar o tomar acciones para mantener la homeostasis de los animales.
https://doi.org/10.22458/urj.v12i1.2792
PDF
HTML
EPUB

Citas

Berman, A. (2011). Invited review: Are adaptations present to support dairy cattle in warm climates. Journal Dairy Science, 94, 2147-2158. DOI: 10.3168/jds.2010-3962

Cascante, A. (2008). Efecto de la edad a primer parto sobre algunas variables productivas, primer intervalo entre partos y características de la curva de lactancia de vacas lecheras en la zona norte de Costa Rica (Tesis inédita de licenciatura). Universidad de Costa Rica, San José, Costa Rica.

Castello-Umaña, M., Alpizar-Naranjo, A., Padilla-Fallas, J., & Keim-San Martin, J. (2017). Efecto de la edad a primer servicio, número y época de parto sobre el comportamiento de la curva de lactancia en vacas Jersey. Nutrición Animal Tropical, 11(2), 1-22. DOI: 10.15517/nat.v1112.31306

Castillo-Badilla, G., Salazar-Carranza, M., Murillo-Herrera, J., & Romero-Zúñiga, J. (2013). Efecto de edad a primer parto sobre parámetros productivos en vacas Jersey de Costa Rica. Agronomía Mesoamericana, 24, 177-187. DOI: 10.15359/rcv.33-1.2

Cole, J. B., Ehrlich, J. L., & Null, D. J. (2012). Short communication: Projenting milk yield using best prediction and the MilBot lactation model. Journal Dairy Science, 95, 4041-4044. DOI: 10.3168/jds.2011-4905

Conejo, J. F. (2017). Efectos de las condiciones ambientales sobre la producción láctea de dos hatos de Ganado Jersey en dos pisos altitudinales de la provincia de Cartago (Tesis inédita de licenciatura) Universidad de Costa Rica, San José, Costa Rica.

Cuevas, V., Loaiza, A., Astengo, H., Moreno, T., Borja, M., Reyes, J., & González, D. (2018). Análisis de la función de producción de leche en el sistema bovimos doble proposito en Ahome, Sinaloa. Revista Mexica de Ciencias Pecuarias, 9, 376-386. DOI: 10.22319/rmcp.v9i2.4545

Daros, R., Hotzel, M., Bran, J., LeBlanc, S., & von Keyserlingk, M. (2017). Prevalence and risk factors for transition period diseases in grazing dairy cows in Brasil. Preventive Veterinary Medicine, 145, 16-22. DOI: 10.1016/j.prevetmed.2017.06.004

Eastham, N., Coates, A., Cripps, P., Richardson, H., Smith R., & Oikonomou, G. (2018). Associations between age at first calving and subsequent lactation performance in UK Holstein and Holstein-Friesian dairy cows. PloS ONE, 13(6), e0197764. DOI: 10.1371/journal.pone.0197764

Echeverri, J. J., & Restrepo, L. F. (2009). Efecto meteorológico sobre la producción y calidad de la leche en dos municipios de Antioquia, Colombia. Revista Lasallista de Investigación, 6(1), 50-57.

Eriksen, F. I., & Whitney, A. S. (1981). Effects of light intensity on growth of some tropical forage species. I. Interaction of light intensity and nitrogen fertilization on six forage grasses. Agronomy Journal, 73, 427-433. DOI: 10.2134/agronj1981.00021962007300030011x

Fanta, M. (2017). Physiological adaptation of Holstein Frisian dairy cattle in Ethiopia: Review article. Journal of Biology Agriculture Healthcare, 7(13), 67-78.

Garner, J. B., Douglas, M. L., Williams, S. R., Wales, W. J., Marett, L. C., Nguyen, T. T., … Hayes, B. J. (2016). Genomic selection improves heat tolerance in dairy cattle. Scientific Reports, 6, 34114. DOI: 10.1038/srep34114

Ghosh, C.P., Kesh, S. S., Tudu, N. K., & Datta, S. (2017). Heat stress in dairy animals-Its impact and remedies: A review. International Journal of Pure & Applied Bioscience, 5, 953-965. DOI: 10.18782/2320-7051.2577

Hagnestam-Nielsen, C., Emanuelson, U., Berglund, B., & Strandberg, E. (2009). Relationship between somatic cell count and milk yield in different stages of lactation. Journal of Dairy Science, 92, 3124-3133. DOI: 10.3168/jds.2008-1719

Herbut, P., & Angrecka. S. (2017). Relationship between THI level and dairy cows’ behavior during summer period. Italian Journal of Animal Science, 17, 226-233. DOI: 10.1080/1828051X.2017.1333892

Klopcic, M., Koops, W. J., & Kuipers. A. (2013).Technical note: A mathematical function to predict daily milk yield of dairy cows in relation to the interval between milkings. Journal of Dairy Science, 96, 6084-6090. DOI: 10.3168/jds.2012-6391

Krishnan, G., Bagath, M., Pragna, P., Kusha, M., Aleena, J., Ravindranathan, P., … Bhatta, B. (2017). Mitigation of the heat stress impact in livestock reproduction. In R. Payan (Ed.), Theriogenology (pp. 63-89). London, UK: In Tech Open. DOI: 10.5772/intechopen.69091

Krizsan, S. J., Sairanen, A., Hojer, A., & Huhtanen, P. (2014). Evaluation of different feed intake models for dairy cows. Journal of Dairy Science, 97, 2387-2397. DOI: 10-3168/jds.2013-7561

MINAET (Ministerio del Ambiente Energía y Telecomunicaciones), IMN (Instituto Meteorológico Nacional), PNUD, y CRRH (Comité Regional de Recursos Hidráulicos). (2008). El clima, su variabilidad y cambio climático en Costa Rica. San José, Costa Rica: MINAET, IMN, PNUD, y CRRH.

Molina, J., & Boschini, C. (1979). Ajuste de la curva de lactancia de ganado Holstein con un modelo lineal modal. Agronomía Costarricense, 3(2), 167-174.

Mora, M., Vargas, B., Moreno, J. J., & Camacho, J. (2015). Factores de riesgo para la incidencia de mastitis clínica en ganado lechero de Costa Rica. Agronomía Costarricense, 39(2), 77-89.

Murphy, M. D., O´Mahony, M. J., Shalloo, L., French, P., & Upton, J. (2014). Comparison of modeling techniques for milk-production forecasting. Journal of Dairy Science, 97, 3352-3363. DOI: 10.3168/jds.2013-7451

Pezzopane J., Santos, P., Evangelista, S., Bosi, C., Cavalcantes, A., Bettiol, G., ... Pellegrino, G. (2016). Panicum maximum cv. Tanzania: climate trends and regional pasture production in Brazil. Grass and Forage Science, 72(1), 104-117. DOI: 10.1111/gfs.12229

Quintero, J., Serna, J., Hurtado, N., Rosero, R., & Cerón-Muñoz. M. (2007). Modelos matemáticos para curvas de lactancia en ganado lechero. Revista Colombiana de Ciencias Pecuarias, 20, 149-156.

Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Beery, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92, 5769-5801. DOI: 10.3168/jds.2009.2009-2431

Rodríguez, J. G., Olivares, J. L., Sánchez, Y., Alemán, Y., & Arece. J. (2013). Cambios climáticos y su efecto sobre algunos grupos de parásitos. Revista de Salud Animal, 35(3), 145-150.

Saborío-Montero, A., Vargas-Leitón, B., Romero-Zuñiga, J. J., & Sánchez, J. (2017). Risk factor associated with milk fever occurrence in grazing dairy cattle. Journal of Dairy Science, 100, 1-8. DOI: 10.3168/jds.2017-13065

Sánchez, J., & Soto, H. (1999). Estimación de la calidad nutricional de los forrajes del cantón de San Carlos. Energía para la producción de leche. Nutrición Animal Tropical, 5(1), 31-49.

SAS Institute. (2012). SAS/STAT®9,4 User´s Guide. SAS Institute Inc., Cary, NC, USA.

Sizemore, G. (2015). Accounting for biodiversity in the dairy industry. Journal Environmental Management, 155, 145-153. DOI: 10.1016/j.jenvman.2015.03.015

Solano, L., Barkema, H. W., Mason, S., Pajor, E. A., LeBlanc, S. J., & Orsel, K. (2016). Prevalence and distribution of foot lesions in dairy cattle in Alberta, Canada. Journal of Dairy Science, 99, 6828-6841. DOI: 10.3168/jds.2016-10941

Valerin, J. (1997). Caracterización fenotípica y evaluación genética de reproductores Jersey para producción láctea, días abiertos, intervalo entre partos y edad al primer parto (Tesis inédita de licenciatura), Universidad de Costa Rica, San José, Costa Rica.

Vargas-Leitón, B. & Solano-Patiño, C. (1995). Factores de proyección y de corrección para producción por lactancia en vacas lecheras de Costa Rica. Archivos Latinoamericanos de Producción Animal, 3(2), 149-164.

Vargas-Leitón, B., Solís-Guzmán, O., Sáenz-Segura, F., & León-Hidalgo, H. (2013).Caracterización y clasificación de hatos lecheros en Costa Rica mediante análisis multivariado. Agronomía Mesoamericana, 24,257-275. DOI: 10.15517/am.v24i2.12525

Von-Keyserlingj, M. A., Rushen, J., de Passillé, A. M., & Weary, D. M. (2009). Invited review: The welfare of dairy cattle-Key concepts and the role of science. Journal of Dairy Science, 92, 4101-4111. DOI: 10.3168./jds.2009-2326

WingChing-Jones, R., Cabalceta-Aguilar, G., & Alvarado-Hernández, A. (2009). Impacto del pastoreo con ganado Holstein y Jersey sobre la densidad aparente de un andisol. Agronomía Mesoamericana, 20,371-379. DOI: 10.15517/am.v20i2.4953

WingChing-Jones, R., Pérez, R., & Salazar. E. (2008). Condiciones ambientales y producción de leche de un hato de ganado Jersey en el trópico Húmedo: El caso del Módulo Lechero-SDA/UCR. Agronomía Costarricense, 32(1), 87-94.

Xue, B., Yan,T., Ferris, C. F., & Mayne, C. S. (2011). Milk production and energy efficiency of Holstein and Jersey-Holstein crossbred dairy cows offered diets containing grass silage. Journal of Dairy Science, 94, 1455-1464. DOI: 10.3168/jds.2010-3663
Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.